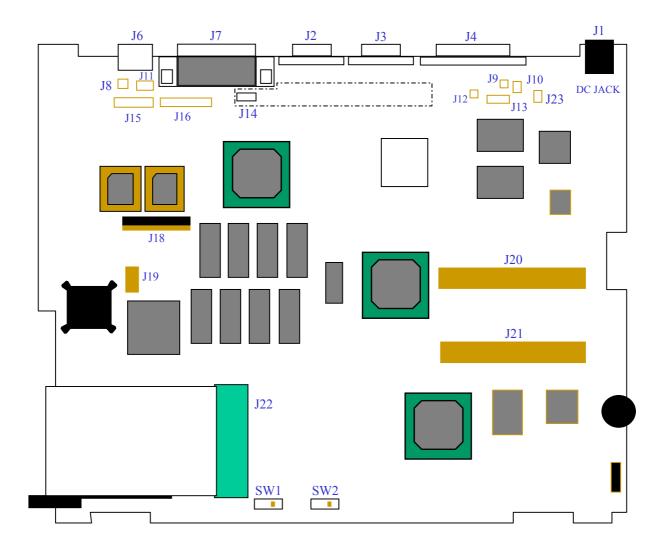
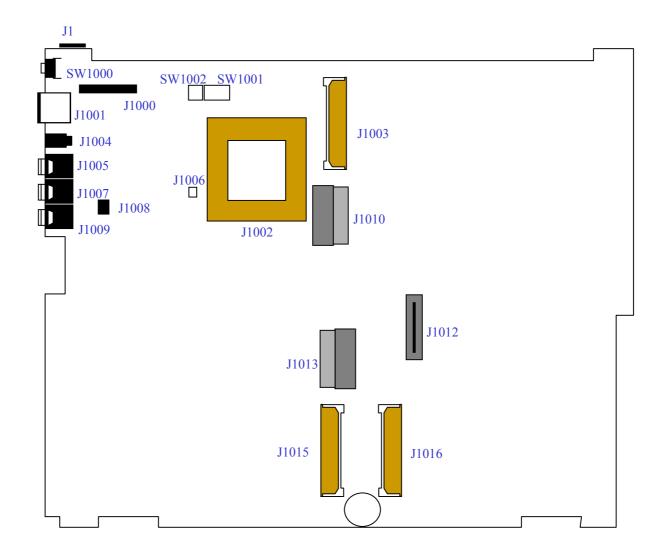
1. DEFINITION OF CONNECTORS & SWITCHES	P.2
2. LOCATION OF SWITCHES & CONNECTORS	P.3
3. MAJOR COMPONENTS	P.5
4. LOCATION OF MAJOR COMPONENTS	P.6
5. PIN DESCRIPTIONS OF MAJOR CHIPS	P.8
6. SWITCH & JUMPERS SETTING	P.30
7. ASSEMBLY & DISASSEMBLY	P.31
8. MAINTENANCE DIAGNOSTICS	P.48
9. TROUBLE SHOOTING	P.51
10. SPARE PARTS LIST	P.83
11. EXPLODED VIEWS AND CIRCUIT DIAGRAM	


1

1. DEFINITION OF CONNECTORS & SWITCHS


- J1 . POWER CONNECTOR
- J2 . VGA CONNECT
- J3 . RS232/SIO
- J4 . PIO CONNECTOR
- J6. USB PORT CONNECTOR
- J7. DOCKINK STATION CONNECTOR
- J8. INTERNAL LEFT SPEAKER CONNECTOR
- J9 . INTERNAL RIGHT SPEAKER CONNECTOR
- J10.INTERNAL MICROPHONE CONNECTOR
- J11.UPPER LED CARD CONNECTOR
- J12.COVER SW CONNECTOR
- J13.BACKLIGHT CONNECTOR
- J14.LOWER LED CONNECTOR
- J15.LVDS CARD CONNECTOR
- J16.LEGACY LCD PANEL CONNECTOR
- J18.INTERNAL KEYBOARD CONNECTOR

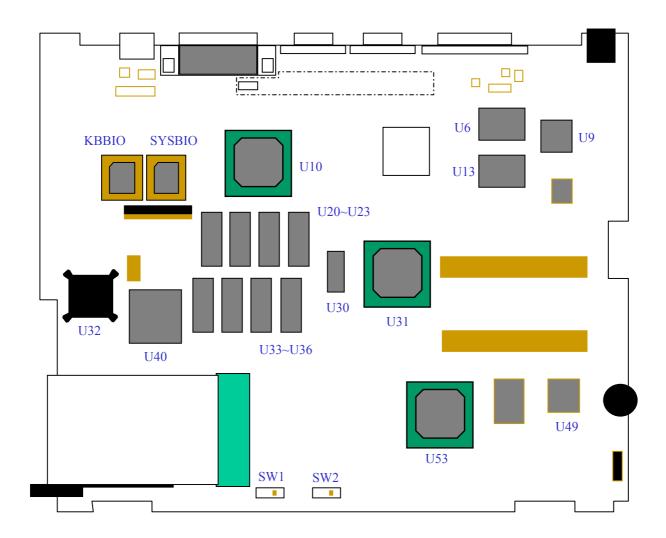
- J19.TOUCHPADE CONNECTOR
- J20, J21.144-PIN DIMM SOCKETS
- J22.PCCARD CONNECTOR
- J23.INTERNAL CAMERA CONNECTOR
- J1000.D/D BOARD CONNECTOR
- J1001.PS/2 KEYBOARD/MOUSE CONNECTOR
- J1003, J1015. FDD/MO/HDD2 CONNECTORS
- J1005.EXTERNAL MICROPHONE CONNECTOR
- J1007.LINE-IN CONNECTOR
- J1008.TV IN/OUT TRANSLATION CARD CONNECTOR
- J1009.LINE-OUT CONNECTOR
- J1010.LEFT BATTERY CONNECTOR
- J1012.FAX/MODEM/VOICE CONNECTOR
- J1013.RIGHT BATTERY CONNECTOR
- J1016.PRIMARY HDD CONNECTOR

2. LOCATION OF CONNECTORS & SWITCHES (A)

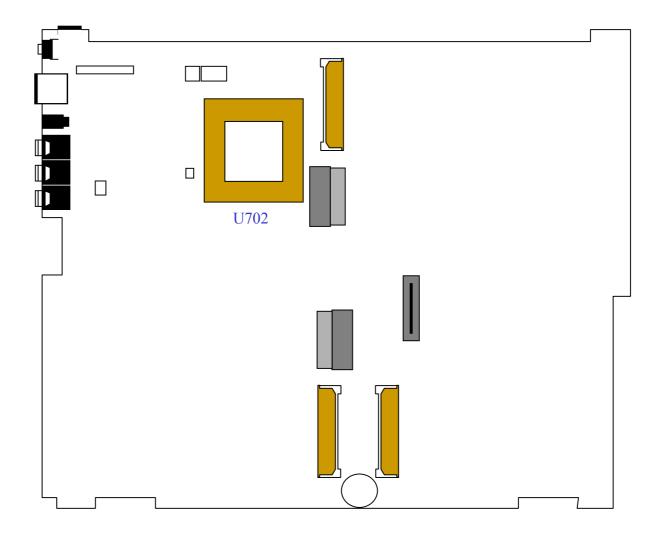
2. LOCATION OF CONNECTORS & SWITCHES (B)

3. MAJOR COMPONENTS

- 1. U9 SUPER I/O CONTROLLER (PC87338VJG)
- 2. U10 LCD CRT & TV 64 BIT MUL-TIMEDIA FLAT PANEL CONTROLLER (CYBER9385/2)
- 3. U6,U13 512K L2 CACHE
- 4. U14 KEYBOARD BIOS (27C256)
- 5. U15 256K FLASH ROM (281020)
- 6. U20~U23,U33~U36 4MB VIDEO MEMORY (416C256)
- 7. U31 MTXC (82439TX)


8.U32 KEYBOARD CONTROLLER(80C51SL)

9. U38 CARDBUS CONTROLLER (OZ6832)


10.U45 CLOCK SYNTHESIZER(W48S67-02)

- 11. U49 AUDIO CONTROLLER (CS4237B)
- 12. U53 PIIX4 (82371AB)
- 13. U702 CPU (P55CLM ,TILLAMOOK, OR COMPATIBLE CPU)

4. LOCATION OF MAJOR COMPONENTS (A)

4. LOCATION OF MAJOR COMPONENTS (B)

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS 5.1 PENTIUM MICROPROCESSOR (P54LM)-1

SYMBOL	TY PE	DESCRIPTION
A 20M #	I	w hen the address bit 20 mask pin is active, the 20 (A20)
		PENTIUNM M CORPROCESSOR MASKS PHYSICAL ADDRES BI
		BEFORE PERFORM ING A LOOKUP TO THE INTERNAL CACHE OR
		EM ULATES THE ADDRESS W RAPAROUND AT THE AM B
		DR IVING A MEMORY BUS CYCLE ONTO THE BUSES.A20M #
		BOUNDARY THAT OCCUS ON THE 8086,8088.
A 31 A 5	ΙQ	A 31 A 3 COM PRISE THR PENTIUM E ,ICROPROCESSOR S ADDRES
A4:A3	0	BUS.
ADS#	IO	W HEN ACTIVE ,THE ADDRESS STATUS OUTPUT INDICCATES
		THAT A VALID BUS CYCLE DEFINITION AND ADDRESS ARE
		AVALABLE ON THE BUS CYCLE DEFINITION AND BUS LINES.
AHOLD	I	THE ADDRESS HOLD REQUEST INPUT ALLOW S ANOTHER BUS MAST-
		ER ACCESS TO PENTIUM M ICROPROCESSOR S ADDRESS BUS FOR A
		CACHE INVALIDATION, BACK INVALIDATION, OR INQUIRE CYCLE.
AP	ΙΌ	THE PENTIUM PROCESS GENERATES ADDRESS PARIFY DURING
		M EM ORY W RIFE OPERATIONS AND CHECK ADDRESS PARIFY
		DUR ING CACHE INVALIDATION CYCLES (ADDRESS BUS SNOOPING).
APCHK#	0	THE PENTION PROCESS ASSERTS THE ADDRES PARITY CHECK
		OUTPUT W HEN AN ADDRES BUS PARITY ERROD IS DETECTED
		APCHK# IS ASSERTED 2 CLOCK CYCLES AFTER EADS# IS
		SAM PLE ACTIVE . APCHK\$ REM A IN ACTIVE FOR ON CLOCK
		CYCLE.
[APICHEN]	ΙO	APIC ENABLE.
OR PICD1		
BE0#	0	BYTE ENABLE PATHO (D7D0).
BE1#	0	BYTE ENABLE PATH1 (D15D8).
BE2#	0	BYTE ENABLE, PATH 2 (D23D16).
BE3#	0	BYTE ENABLE, PATH 3 (D 31 D 24).
BE4#	0	BYTE ENABLE, PATH4 (D39 D32).
BE5#	0	BYTE ENABLE, PATH5 (D47:D40).
BE6#	0	BYTE ENABLE, PATH6 (D55 D48).
BE7#	0	byte enable , path7 (D63:D56).

SYMBOL	TY PE	DESCRIPTION
BF	I	THE BUS FREQUENCY SIGNAL (BF) DETE RM INES THE I/O BUS
		TO PROCESSOR CORE FREQUENCY RATID.
BOFF#	I	ENSURE THAT THE PROCESSOR DOESN T FETCH STALE DATA
		FROM MAIN MEMORY.
BP3:2	0	THE BREAK POINT OUTPUTS INDICATE THAT A BREAKPOINT
		M ATCH HAS BEEN DETECTED THROUGH THE BRESKPO NT
		REGISTER.
BP/PM 1:0	0	BREAKPOINT AND PERFORMANCE MONIFORING PINS.
BRDY#	I	THE BURS READY INPUT INDICATES THAT THE CURRENTLY ADDRE-
		SSED DEVICE HAS PRESENTED VALID DATA ON THE DATA BUS PINS
		IN RESPONSE TO A READ OR THAT CURRENTLY ADDRESSED DEVICE
		HAS ACCEPTED DATA FROM THE PENTIUM CPU IN RESPONSE TO A
		W RITE.
BRDCY#	I	THE BURS READY INPUT INDICATES THAT THE LEVEL 2 CACHE HAS
		presented valid data on the data bus pins in response to μ
		READ OR THAT THE LEVEL 2 CACHE HAS ACCEPTED DATA FROM
		THE PENTIUM CPU IN RESPONSE TO A WRITE.
BREQ#	0	THE INTERNAL CYCLE PENDING OUTPUT INDICATES THAT THE
		PENTIUM MICROCESSOR HAS A BUS CYCLE REQUEST PENDING.
вт3:Вт0	NA	BRANCH TRACE LINES ARE DRIVEN DURING A BRANCH TRACE
		SPEC AL CYCLE.
BUSCHK#	I	THE BUS CHECK ALLOW S SYSTEM DESIGNERS TO NOTIFY THE CPU
		IF A BUS CYCLE HAS NOT COM PLETED SUCCESSFULLY .
CACHE#	IO	CACHE# SIGNAL IS ACTIVE W HEN INFORM ATION IS BEGIN
		TRANSFREED BETW EEN EXTERNAL M EM ORY AND AN INTERNAL
		CACHE.
CLK	I	CLOCK PROVIDES THE FUNDAM NTAL TIM ING AND THE INTERNAL
		OPERATING FREQUENCY FOR THEE PENTIUM M ICROPROCESSOR
CPUTYP	I	CPU TYPE PIN SAM PLED BY THE PROCESSOR AT THE TRALING-
		EDGE OF RESET TO DETERM INE W HETHER IT IS PRIMARY OR THE
		DUAL PROCESSPR .

5.1 PENTIUM MICROPROCESSOR (P54LM)-2

SYMBOL	TYPE	DESCRIPTION
D7:D0	I/O	DATA PATH ZERO.
D51:D8	I/O	DATA PATH ONE.
D23:D16	I/O	DATA PATH TWO.
D31:D24	I/O	DATA PATH THREE.
D39:D32	I/O	DATA PATH FOUR.
D47:D40	I/O	DATA PATH FIVE.
D55:D48	I/O	DATA PATH SIX.
D63:D56	I/O	DATA PATH SEVEN.
D/C#	I/O	DATA OR CONTROL. AT THE START OF BUS CYCLE, THE PENTIUM
		PROCESSOR SETS THIS LINE HIGH IF DATA WILL BE TRANSFERED
-		DURING THE CURRENT BUS CYCLE, OTHERWISE SETS IT TO LOW.
D/P#	0	DUAL/PRIMARY.THIS IS AN OUTPUT OF PRIMARY PROCESSOR AND
		IS NOT USED BY THE DUAL PROCESSOR.IT ASSERTED(LOW) BY THE
		PRIMARY PROCESSOR WHEN IT HAS ACQUIRED PRIVATE BUS OWN-
		ERSHIP AND HAS INITIATED A BUS CYCLE
DPO	I/O	PARITY BIT FOR DATA PATH 0,D7:D0.
DP1	I/O	PARITY BIT FOR DATA PATH 1,D15:D8.
DP2	I/O	PARITY BIT FOR DATA PATH 2,D23:D16.
DP3	I/O	PARITY BIT FOR DATA PATH 3,D31:D24.
DP4	I/O	PARITY BIT FOR DATA PATH 4,D39:D32.
DP5	I/O	PARITY BIT FOR DATA PATH 5,D47:D40.
DP6	I/O	PARITY BIT FOR DATA PATH 6,D55:D48.
DP7	I/O	PARITY BIT FOR DATA PATH 7,D63:D56.
DPEN#	I/O	DUAL PROCESSOR ENABLE.
EADS#	Ι	THE EXTERNAL ADDRESS STROBE SIGNAL INDICATES THAT A VALID
		EXTERNAL ADDRESS HAS BEEN DRIVEN ONTO THE PENTIUM'S A4:A3
		ADDRESS LINES BY ANOTHER MASTER.
EWBE#	Ι	THE EXTERNAL WRITE BUFFER EMPTY IS USED TO ENSURE THAT
		MEMORY OPERATIONS OCCUR IN ORDER OF EXECUTION.
FLUSH#	Ι	THE CACHE FLUSH INPUT FORCES FORCES THE PENTIUM ROCE-
		SSOR TO FLUSH THE CONTENTS IN OF ITS INTERNAL CACHE.
FERR#	0	FLOATING0POINT ERROR OUTPUT PIN IS DRIVEN ACTIVE WHEN A
		FLOATING-POINT ERROR OCCURS.

SYMBOL	TYPE	DESCRIPTION
FRCMC#	I	THE FUNCTOIN REDUNDANCY CHECKING MASTER/CHECKER# PIN IS
		SAMPLED BY THE PENTIUM MICROPROCESSOR DURING RESET TO
		DETERMINE WHETHER THE MICROPROCESSOR SHOULD BE CONFIG-
		ED AS A FUNCTIONAL REDUNDANCY MASTER OR CHECKER.
HIT#	I/O	THE HIT# SIGNAL ACTIVE TO INDICATE A SNOOP HIT IN EITHER
		THE INTERNAL CODE OR DATA CACHE.
HITM#	I/O	THE PENTIUM MICOPROCESSOR DRIVES THE HIT MODIFIED
		SIGNAL ACTIVE TO INDICATE A SNOOP HIT TO A MODIFIED
		LINE IN THE DATA CACHE.
HLDA	I/O	BUS HOLD ACKNOWLEDGE.
HOLD	I	THE BUS HOLD REQUEST INPUT ALLOWS ANOTHER BUS MASTER
		TO GAIN COMPLETE CONTROL OF THE PENTIUM'S LOCAL BUSES.
IBT	NA	THE INSTRUCTION BRANCH TAKEN SIGNAL IS DRIVEN ACTIVE FOR
		ONE CLOCK CYCLE WHEN PENTIUM MICROPROCESSOE EXECUTES
		AN INSTRUCTION RESULTING IN AN EXECUTION BRANCH.
IERR#	0	INTERNAL ERROR IS ASSERTED WHEN A PARITY ERROR IS ENCOU-
		NTERED INSIDE THE PENTIUM MICROPROCESSOR.
IGNNE#	I	IGNORE NUMERIC ERROR INPUT IS ASSERTED BY EXTERNAL LOGIC
		THE PENTIUM MICROPROCESSOR WILL IGNORE A NUMERIC ERROR.
		AND CONTINUE EXECUTING NON-CONTROL FLOATING-POINT INSTRU-
		CTIONS.
INIT	I	PENTIUM MICROCESSOR INIT INPUT HASTHE SAME EFFECT AS
		THE RESET SIGNAL EXCEPT THAT THE FOLLOWING RETAIN
		THE VALUES.
INTR	I	THIS IS MASKABLE INTERRUPT REQUEST INPUT.
INV	I	THE INVALIDATE INPUT TELLS THE PENTIUM MICROPROCESSOR
		WHETHER THE CACHE LINE STATE SHOULD BE MARKED INVALIDAT-
		ED OR SHARED AS A RESULT OF SNOOP HIT.
IU	NA	THE IU SIGNAL IDICATED THAT AN INSTRUCTION IN THE "u"
		PIPLINE HAS COMPLETED EXECUTION.
IV	NA	THE IU SIGNAL IDICATED THAT AN INSTRUCTION IN THE "v"
		PIPLINE HAS COMPLETED EXECUTION.

5.1 PENTIUM MICROPROCESSOR (P54LM)-3

SYMBOL	TYPE	DESCRIPTION
KEN#	Ι	THE CACHE ENABLE PIN IS SAMPLED TO DETERMINE IF THE
		CURRENT BUS CYCLE IS CACHEABLE.
LINT0 OR	Ι	IF THE PROCESSOR'S LOCAL APIC IS ENABLE, THIS IS THE
INTR		LINTO INPUT TO THE APIC.
LOCK#	I/O	THE LOCK# SIGNAL IS ASSERTED WHEN THE PENTIUM
		MICROPROCESSOR WANTS TO RUN MULTIP BUS CYCLES
		WITHOUT HAVING THE BUSES TAKEN AWAY BY ANOTHER BUS
		MASTER.
M/IO#	I/O	MEMORY OR I/O. AT THE START OF BUS CYCLE, THE PENTIUM
		PROCESSOR SETS THIS LINE HIGH IF ADDRESSING A MEMORY LOC-
		ATION AND LOW IF ADDRESSING AN I/O LOCATION.
NA#	Ι	THE NEXT ADDRESS INPUT INDICATES THAT THE MEMORY
		SUBSYSTEM IS CAPABLE FO TAKING ADVANTAGE OF THE
		PENTIUM MICROPROCESSOR'S ADDRESS PIPELINING.
NMI	Ι	NON-MASKABLE INTERRUPT REQUEST.
PBREQ#	I/O	PRIVATE BUS REQUEST.ONLY USED IN DUAL PROCESSOR SYSTEM.
PBGNT#	I/O	PRIVATE BUS GRANT.ONLY USED IN DUAL PROCESSOR SYSTEM.
PCHK#	0	SEE DP0.
PCD	0	PAGE CACHE DISABLE.
PEN#	Ι	PARITY ENABLE.
PHIT#	I/O	PARIVATE BUS HIT.PHIT# IS AN OUTPUT FROM THE LRM AND AN
		INPUT TO THE MRM.TI IS USED IN A DUAL PROCESSOR SYTEM.
PHITM#	I/O	PRIVATE BUS HIT ON MODIFIED LINE.
PICCLK	Ι	PROGRAMMABLE INTERRUPT CONTROLLER CLOCK.
PICDO OR	I/O	PROGRAMMABLE INTERRUPT CONTROLLER DATA LINE0.
DEPN#		
PICD1 OR	I/O	PROGRAMMABLE INTERRUPT CONTROLLER DATA LINE1.
APICEN		
PRDY	0	PROBE READY.ASSERTED BY THE PROCESSOR WHEN IT HAS STOP-
		PED EXECUTION IN RESPONSE TO THE R/S# SIGNAL BEING ASSERTED
		LOW.
PWT	0	THE PAGE WRITE-THROUGHT PIN REFLECTS THE STATE OF THE
		PAGE ATTRIBUTE BIT.

SYMBOL	TYPE	DESCRIPTION
RESET	Ι	1.KEEPS THE MICROPROCESSOR FROM OPERATING UNTIL THE
		POWER SUPPLY VOLTAGES HAVE COME UP AND STSBILIZED.
		2.FORCES KNOWN DEFAULT VALUES INTO THE PENTIUM
		PROCESSOR REGISTER.
R/S#	Ι	RUN/STOP. WHEN SET HIGH, THE PROCESSOR IS PERMITTED TO
		RUN NORMALLY.WHEN SET LOW, THE PROCESSOR CEASES TO
		EXECUTE INSTRUCTIONS AND ENTERS PROBE MODE.
SCYC	I/O	SPLIT CYCLE IS VALID FOR LOCKED BUS CYCLES OLY.SCYC IS
		ASSERTED WHEN A LOCKED TRANSFER RESULTS IN A MISALIGNED
		MWMORY ACCESS.
SMI#	Ι	SYSTEM MANAGEMENT INTERRUPT INFORMS THE PROCESSOR
		THAT A SYSTEM MANAGEMENT INTERRUPT ROUTINE.RESIDING IN
		SYSTEM MANAGEMENT ADDRESS SPACE NEEDS TO BE PERFORMED.
SMICAT#	0	SYSTEM MANAGEMENT INTERRUPT ACKNOWEDGW INFORMS EXTE-
		RNAL LOGIC THAT THE PROCESSOR IS IN SYSTEM MANAGEMENT
		MODE.
TCK	Ι	TEST CLOCK.USED TO CLOCK STATE INFORMATION AND DATA INTO
		AND OUT OF DEVICE DURING BOUNDARY SCAN.
TDI	Ι	TEST INPUT.USED TO SHIFT DATA AND INSTRUCTIONS INTO THE
		TEST ACCESS PORT IN A SERIAL BIT STREAM.
TDO	0	TEST OUTPUT.USED TO SHIFT DATA OUT OF THE TEST ACCESS PORT
		IN A SERIAL BIT STREAM.
TMS	Ι	TEST MODE SELECT.USED TO CONTROL THE STATE OF THE TEST
		ACCESS PORT CONTROLLER.
TRST#	Ι	TEST RESET.USED TO FORCE THE TEST ACCESS PORT CONTROLLER
		INTO AN INITIALIZED STATE.
WB/WT#	Ι	THE WRITE-BACK OR WRITE THROUGH INPUT ALLOWS EXTERNAL
		LOGIC TO DETERMINE WHETHER A IS PLACED IN THE WRITE BACK
		OR WRITE THROUGH STATE.
W/R#	I/O	WRITE OR READ.AT THE START OF A BUS CYCLE, THE PENTIUM
		PROCESSOR SETS THIS LINE HIGH IF THE CURRENT BUS CYCLE IS A
		WRITE BUS CYCLE.W/R# IS SET LOW IF THE CURRENT BUS CYCLE
		IS A READ BUS CYCLE.

Symbol	Туре	Name and Function
A20M#	Ι	When the address bit 20 mask pin is asserted, the Pentium ?processor with MMX _{TM} technology emulates the address wraparound at 1 Mbyte which occurs on the 8086 by masking physical address bit 20 (A20) before performing a lookup to the internal caches or driving a memory cycle on the bus. The effect of A20M# is undefined in protected mode. A20M# must be asserted only when the processor is in real mode. A20M# is internally masked by the Pentium processor with MMX technology when configured as a Dual processor.
A31-A3	I/O	As outputs, the address lines of the processor along with the byte enables define the physical area of memory or I/O accessed. The external system drives the inquire address to the processor on A31-A5.
ADS#	0	The address strobe indicates that a new valid bus cycle is currently being driven by the Pentium processor with MMX technology.
ADSC#	0	The address strobe (copy) is functionally identical to ADS#.
AHOLD	Ι	In response to the assertion of address hold , the Pentium processor with MMX technology will stop driving the address lines (A31-A3) and AP in the next clock. The rest of the bus will remain active so data can be returned or driven for previously issued bus cycles.
АР	I/O	Address parity is driven by the Pentium processor with MMX technology with even parity information on all Pentium processor with MMX technology generated cycles in the same clock that the address is driven. Even parity must be driven back to the Pentium processor with MMX technology during inquire cycles on this pin in the same clock as EADS# to ensure that correct parity check status is indicated by the Pentium processor with MMX technology.
APCHK#	0	The address parity check status pin is asserted two clocks after EADS# is sampled active if the Pentium processor with MMX technology has detected a parity error on the address bus during inquire cycles. APCHK# will remain active for one clock each time a parity error is detected (including during dual processing private snooping).
[APICEN] PICD1	Ι	Advanced Programmable Interrupt Controller Enable enables or disables the on-chip APIC interrupt controller. If sampled high at the falling edge of RESET, the APIC is enabled. APICEN shares a pin with the PICD1 signal.

Symbol	Туре	Name and Function
BE7#-E4# BE3#-E0#	O I/O	The byte enable pins are used to determine which bytes must be written to external memory or which bytes were requested by the CPU for the current cycle. The byte enables are driven in the same clock as the address lines (A31-3). Additionally, the lower 4-byte enables (BE3#-BE0#) are used on the Pentium processor with MMX technology as APIC ID inputs and are sampled at RESET. In dual processing mode, BE4# is used as an input during Flush cycles.
BF[1:0]	Ι	The bus frequency pins determine the bus-to-core frequency ratio. BF[1:0] are sampled at RESET, and cannot be changed until another non-warm (1 ms) assertion of RESET. Additionally, BF[1:0] must not change values while RESET is active. See Table 3 for Bus Frequency Selections.
BOFF#	Ι	The backoff input is used to abort all outstanding bus cycles that have not yet completed. In response to BOFF#, the Pentium processor with MMX technology will float all pins normally floated during bus hold in the next clock. The processor remains in bus hold until BOFF# is negated, at which time the Pentium processor with MMX technology restarts the aborted bus cycle(s) in their entirety.
BP[3:2] PM/BP[1:0]	0	The breakpoint pins (BP3-0) correspond to the debug registers, DR3-DR0 These pins externally indicate a breakpoint match when the debug registers are programmed to test for breakpoint matches.
		BP1 and BP0 are multiplexed with the performance monitoring pins (PM1 and PM0). The PB1 and PB0 bits in the Debug Mode Control Register determine if the pins are configured as breakpoint or performance monitoring pins. The pins come out of RESET configured for performance monitoring.
BRDY#	Ι	The burst ready input indicates that the external system has presented valid data on the data pins in response to a read or that the external system has accepted the Pentium processor with MMX technology data in response to a write request. This signal is sampled in the T2, T12 and T2P bus states.
BRDYC#	Ι	The burst ready (copy) is functionally identical to BRDY#.
BREQ	0	The bus request output indicates to the external system that the Pentium processor with MMX technology has internally generated a bus request. This signal is always driven whether or not the Pentium processor with MMX technology is driving its bus.

Symbol	Туре	Name and Function
BUSCHK#	Ι	The bus check input allows the system to signal an unsuccessful completion of a bus cycle. If this pin is sampled active, the Pentium processor with MMX technology will latch the address and control signals in the machine check registers. If, in addition, the MCE bit in CR4 is set, the Pentium processor with MMX technology will vector to the machine check exception. NOTE: To assure that BUSCHK# will always be recognized, STPCLK# must be deasserted any time BUSCHK# is asserted by the system, before the system allows another external bus cycle. If BUSCHK# is asserted by the system for a snoop cycle while STPCLK# remains asserted, usually (if MCE=1) the processor will vector to the exception after STPCLK# is deasserted. But if another snoop to the same line occurs during STPCLK# assertion, the processor can lose the BUSCHK# request.
CACHE#	0	For Pentium processor with MMX technology-initiated cycles the cache pin indicates internal cacheability of the cycle (if a read), and indicates a burst write back cycle (if a write). If this pin is driven inactive during a read cycle, the Pentium processor with MMX technology will not cache the returned data, regardless of the state of the KEN# pin. This pin is also used to determine the cycle length (number of transfers in the cycle).
CLK	Ι	The clock input provides the fundamental timing for the Pentium processor with MMX technology. Its frequency is the operating frequency of the Pentium processor with MMX technology external bus, and requires TTL levels. All external timing parameters except TDI, TDO, TMS, TRST#, and PICD0-1 are specified with respect to the rising edge of CLK. This pin is 3.3V-tolerant-only on the Pentium processor with MMX technology. Please refer to the Pentium ?Processor Family Developer• Manual (Order Number 241428) for the CLK and PICCLK signal quality specification. NOTE: It is recommended that CLK begin toggling within 150 ms after VCC reaches its proper operating level. This recommendation is to ensure long-term reliability of the device.
СРИТҮР	I	CPU type distinguishes the Primary processor from the Dual processor. In a single processor environment, or when the Pentium processor with MMX technology is acting as the Primary processor in a dual processing system, CPUTYP should be strapped to VSS. The Dual processor should have CPUTYP strapped to VCC3.
D/C#	0	The data/code output is one of the primary bus cycle definition pins. It is driven valid in the same clock as the ADS# signal is asserted. D/C# distinguishes between data and code or special cycles.

Symbol	Туре	Name and Function
D/P#	0	The dual/primary processor indication. The Primary processor drives this pin low when it is driving the bus, otherwise it drives this pin high. D/P# is always driven. D/P# can be sampled for the current cycle with ADS# (like a status pin). This pin is defined only on the Primary processor. Dual processing is supported in a system only if both processors are operating at identical core and bus frequencies. Within these restrictions, two processors of different steppings may operate together in a system.
D63-D0	I/O	These are the 64 data lines for the processor. Lines D7-D0 define the least significant byte of the data bus; lines D63-D56 define the most significant byte of the data bus. When the CPU is driving the data lines, they are driven during the T2, T12, or T2P clocks for that cycle. During reads, the CPU samples the data bus when BRDY# is returned.
DP7-DP0	I/O	These are the data parity pins for the processor. There is one for each byte of the data bus. They are driven by the Pentium processor with MMX technology with even parity information on writes in the same clock as write data. Even parity information must be driven back to the Pentium processor with MMX technology on these pins in the same clock as the data to ensure that the correct parity check status is indicated by the Pentium processor with MMX technology. DP7 applies to D63-56, DP0 applies to D7-0.
[DPEN#] PICD0	I/O	Dual processing enable is an output of the Dual processor and an input of the Primary processor. The Dual processor drives DPEN# low to the Primary processor at RESET to indicate that the Primary processor should enable dual processor mode. DPEN# may be sampled by the system at the falling edge of RESET to determine if the dual-processor socket is occupied. DPEN# is multiplexed with PICD0.
EADS#	Ι	This signal indicates that a valid external address has been driven onto the Pentium processor with MMX technology address pins to be used for an inquire cycle.
EWBE#	Ι	The external write buffer empty input, when inactive (high), indicates that a write cycle is pending in the external system. When the Pentium processor with MMX technology generates a write, and EWBE# is sampled inactive, the Pentium processor with MMX technology will hold off all subsequent writes to all E- or M-state lines in the data cache until all write cycles have completed, as indicated by EWBE# being active.
FERR#	0	The floating-point error pin is driven active when an unmasked floating-point error occurs. FERR# is similar to the ERROR# pin on the Intel387?math coprocessor. FERR# is included for compatibility with systems using DOS type floating-point error reporting. FERR# is never driven active by the Dual processor. 12

Symbol	Туре	Name and Function
FLUSH#	Ι	When asserted, the cache flush input forces the Pentium processor with MMX technology to write back all modified lines in the data cache and invalidate its internal caches. A Flush Acknowledge special cycle will be generated by the Pentium processor with MMX technology indicating completion of the write back and invalidation. If FLUSH# is sampled low when RESET transitions from high to low, tristate test mode is entered. If two Pentium processors with MMX technology are operating in dual processing mode and FLUSH# is asserted, the Dual processor will perform a flush first (without a flush acknowledge cycle), then the Primary processor will perform a flush followed by a flush acknowledge cycle. NOTE: If the FLUSH# signal is asserted in dual processing mode, it must be deasserted at least one clock prior to BRDY# of the FLUSH Acknowledge cycle to avoid DP arbitration problems.
FRCMC#	Ι	Functional Redundancy Checking is not supported on the Pentium processor with MMX technology. The FRCMC# pin is not defined for the Pentium processor with MMX technology. This pin should be left as a • C?or tied to VCC3 via an external pull-up resistor.
HIT#	0	The hit indication is driven to reflect the outcome of an inquire cycle. If an inquire cycle hits a valid line in either the Pentium processor with MMX technology data or instruction cache, this pin is asserted two clocks after EADS# is sampled asserted. If the inquire cycle misses the Pentium processor with MMX technology cache, this pin is negated two clocks after EADS#. This pin changes its value only as a result of an inquire cycle and retains its value between the cycles.
HITM#	0	The hit to a modified line output is driven to reflect the outcome of an inquire cycle. It is asserted after inquire cycles which resulted in a hit to a modified line in the data cache. It is used to inhibit another bus master from accessing the data until the line is completely written back.
HLDA	0	The bus hold acknowledge pin goes active in response to a hold request driven to the processor on the HOLD pin. It indicates that the Pentium processor with MMX technology has floated most of the output pins and relinquished the bus to another local bus master. When leaving bus hold, HLDA will be driven inactive and the Pentium processor with MMX technology will resume driving the bus. If the Pentium processor with MMX technology has a bus cycle pending, it will be driven one clock cycle after HLDA is de-asserted.

Symbol	Туре	Name and Function
HOLD	I	In response to the bus hold request , the Pentium processor with MMX technology will float most of its output and input/output pins and assert HLDA after completing all outstanding bus cycles. The Pentium processor with MMX technology will maintain its bus in this state until HOLD is de-asserted. HOLD is not recognized during LOCK cycles. The Pentium processor with MMX technology will recognize HOLD during reset.
IERR#	0	The internal error pin is used to indicate internal parity errors. If a parity error occurs on a read from an internal array, the Pentium processor with MMX technology will assert the IERR# pin for one clock and then shutdown.
IGNNE#	Ι	This is the ignore numeric error input. This pin has no effect when the NE bit in CR0 is set to 1. When the CR0.NE bit is 0, and the IGNNE# pin is asserted, the Pentium processor with MMX technology will ignore any pending unmasked numeric exception and continue executing floating-point instructions for the entire duration that this pin is asserted. When the CR0.NE bit is 0, IGNNE# is not asserted, a pending unmasked numeric exception exists (SW.ES = 1), and the floating-point instruction is one of FINIT, FCLEX, FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, the Pentium processor with MMX technology will execute the instruction in spite of the pending exception exists (SW.ES = 1), and the floating-point instruction in spite of the pending exception. When the CR0.NE bit is 0, IGNNE# is not asserted a pending unmasked numeric exception exists (SW.ES = 1), and the floating-point instruction is one other than FINIT, FCLEX, FSTENV, FSAVE, FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, the Pentium processor with MMX technology will stop execution and wait for an external interrupt. IGNNE# is internally masked when the Pentium processor with MMX technology is configured as a Dual processor.
INIT	Ι	The Pentium processor with MMX technology initialization input pin forces the Pentium processor with MMX technology to begin execution in a known state. The processor state after INIT is the same as the state after RESET except that the internal caches, write buffers, and floating-point registers retain the values they had prior to INIT. INIT may NOT be used in lieu of RESET after power-up. If INIT is sampled high when RESET transitions from high to low, the Pentium processor with MMX technology will perform built-in self test prior to the start of program execution.
INTR/LINT() I	An active maskable interrupt input indicates that an external interrupt has been generated. If the IF bit in the EFLAGS register is set, the Pentium processor with MMX technology will generate two locked interrupt acknowledge bus cycles and vector to an interrupt handler after the current instruction execution is completed. INTR must remain active until the first interrupt acknowledge cycle is generated to assure that the interrupt is recognized. If the local APIC is enabled, this pin becomes LINT0.

Symbol	Туре	Name and Function
INV	Ι	The invalidation input determines the final cache line state (S or I) in case of an inquire cycle hit. It is sampled together with the address for the inquire cycle in the clock EADS# is sampled active.
KEN#	Ι	The cache enable pin is used to determine whether the current cycle is cacheable or not and is consequently used to determine cycle length. When the Pentium processor with MMX technology generates a cycle that can be cached (CACHE# asserted) and KEN# is active, the cycle will be transformed into a burst line fill cycle.
LINT0/INTF	LI	If the APIC is enabled, this pin is local interrupt 0 . If the APIC is disabled, this pin is INTR.
LINT1/NMI	Ι	If the APIC is enabled, this pin is local interrupt 1 . If the APIC is disabled, this pin is NMI.
LOCK#	0	The bus lock pin indicates that the current bus cycle is locked. The Pentium processor with MMX technology will not allow a bus hold when LOCK# is asserted (but AHOLD and BOFF# are allowed). LOCK# goes active in the first clock of the first locked bus cycle and goes inactive after the BRDY# is returned for the last locked bus cycle. LOCK# is guaranteed to be de-asserted for at least one clock between back-to-back locked cycles.
M/IO#	0	The memory/input-output is one of the primary bus cycle definition pins. It is driven valid in the same clock as the ADS# signal is asserted. M/IO# distinguishes between memory and I/O cycles.
NA#	Ι	An active next address input indicates that the external memory system is ready to accept a new bus cycle although all data transfers for the current cycle have not yet completed. The Pentium processor with MMX technology will issue ADS# for a pending cycle two clocks after NA# is asserted. The Pentium processor with MMX technology supports up to 2 outstanding bus cycles.
NMI/LINT1	Ι	The non-maskable interrupt request signal indicates that an external non-maskable interrupt has been generated. If the local APIC is enabled, this pin becomes LINT1.
PBGNT#	I/O	Private bus grant is the grant line that is used when two Pentium processors with MMX technology are configured in dual processing mode, in order to perform private bus arbitration. PBGNT# should be left unconnected if only one Pentium processor with MMX technology exists in a system.

Symbol	Туре	Name and Function
PBREQ#	I/O	Private bus request is the request line that is used when two Pentium processor with MMX technology are configured in dual processing mode, in order to perform private bus arbitration. PBREQ# should be left unconnected if only one Pentium processor with MMX technology exists in a system.
PCD	0	The page cache disable pin reflects the state of the PCD bit in CR3, the Page Directory Entry, or the Page Table Entry. The purpose of PCD is to provide an external cacheability indication on a page by page basis.
PCHK#	0	The parity check output indicates the result of a parity check on a data read. It is driven with parity status two clocks after BRDY# is returned. PCHK# remains low one clock for each clock in which a parity error was detected. Parity is checked only for the bytes on which valid data is returned. When two Pentium processors with MMX technology are operating in dual processing mode, PCHK# may be driven two or three clocks after BRDY# is returned.
PEN#	I	The parity enable input (along with CR4.MCE) determines whether a machine check exception will be taken as a result of a data parity error on a read cycle. If this pin is sampled active in the clock a data parity error is detected, the Pentium processor with MMX technology will latch the address and control signals of the cycle with the parity error in the machine check registers. If, in addition, the machine check enable bit in CR4 is set to ?? the Pentium processor with MMX technology will vector to the machine check exception before the beginning of the next instruction.
PHIT#	I/O	Private hit is a hit indication used when two Pentium processors with MMX technology are configured in dual processing mode, in order to maintain local cache coherency. PHIT# should be left unconnected if only one Pentium processor with MMX technology exists in a system.
PHITM#	I/O	Private modified hit is a hit on a modified cache line indication used when two Pentium processors with MMX technology are configured in dual processing mode, in order to maintain local cache coherency. PHITM# should be left unconnected if only one Pentium processor with MMX technology exists in a system.
PICCLK	I	The APIC interrupt controller serial data bus clock is driven into the programmable interrupt controller clock input of the Pentium processor with MMX technology. This pin is 3.3V-tolerant-only on the Pentium processor with MMX technology. Please refer to the Pentium ?Processor Family Developer• Manual (Order Number 241428) for the CLK and PICCLK signal quality specification.

Symbol	Туре	Name and Function
PICD0-1 [DPEN#] [APICEN]	I/O	Programmable interrupt controller data lines 0-1 of the Pentium processor with MMX technology comprise the data portion of the APIC 3-wire bus. They are open-drain outputs that require external pull-up resistors. These signals are multiplexed with DPEN# and APICEN respectively.
PM/BP[1:0]	0	These pins function as part of the performance monitoring feature. The breakpoint 1-0 pins are multiplexed with the performance monitoring 1-0 pins. The PB1 and PB0 bits in the Debug Mode Control Register determine if the pins are configured as breakpoint or performance monitoring pins. The pins come out of RESET configured for performance monitoring.
PRDY	0	The probe ready output pin is provided for use with the Intel debug port. Please refer to the Pentium?Processor Family Developer • Manual (Order Number 241428) for more details.
PWT	0	The page write through pin reflects the state of the PWT bit in CR3, the page directory entry, or the page table entry. The PWT pin is used to provide an external write back indication on a page-by-page basis.
R/S#	Ι	The run/stop input is provided for use with the Intel debug port. Please refer to the Pentium?Processor Family Developer• Manual (Order Number 241428) for more details.
RESET	Ι	RESET forces the Pentium processor with MMX technology to begin execution at a known state. All the Pentium processor with MMX technology internal caches will be invalidated upon the RESET. Modified lines in the data cache are not written back. FLUSH# and INIT are sampled when RESET transitions from high to low to determine if tristate test mode or checker mode will be entered, or if Built-In Self-Test (BIST) will be run.
SCYC	0	The split cycle output is asserted during misaligned LOCKed transfers to indicate that more than two cycles will be locked together. This signal is defined for locked cycles only. It is undefined for cycles which are not locked.
SMI#	Ι	The system management interrupt causes a system management interrupt request to be latched internally. When the latched SMI# is recognized on an instruction boundary, the processor enters System Management Mode.
SMIACT#	0	An active system management interrupt active output indicates that the processor is operating in System Management Mode.

Symbol	Туре	Name and Function
STPCLK#	Ι	Assertion of the stop clock input signifies a request to stop the internal clock of the Pentium processor with MMX technology, thereby causing the core to consume less power. When the CPU recognizes STPCLK#, the processor will stop execution on the next instruction boundary, unless superseded by a higher priority interrupt, and generate a stop grant acknowledge cycle. When STPCLK# is asserted, the Pentium processor with MMX technology will still respond to interprocessor and external snoop requests.
ТСК	Ι	The testability clock input provides the clocking function for the Pentium processor with MMX technology boundary scan in accordance with the IEEE Boundary Scan interface (Standard 1149.1). It is used to clock state information and data into and out of the Pentium processor with MMX technology during boundary scan.
TDI	Ι	The test data input is a serial input for the test logic. TAP instructions and data are shifted into the Pentium processor with MMX technology on the TDI pin on the rising edge of TCK when the TAP controller is in an appropriate state.
TDO	0	The test data output is a serial output of the test logic. TAP instructions and data are shifted out of the Pentium processor with MMX technology on the TDO pin on TCK 's falling edge when the TAP controller is in an appropriate state.
TMS	Ι	The value of the test mode select input signal sampled at the rising edge of TCK controls the sequence of TAP controller state changes.
TRST#	Ι	When asserted, the test reset input allows the TAP controller to be asynchronously initialized.
VCC2 VCC3	I I	The Pentium processor with MMX technology has 25 2.8V power inputs. The Pentium processor with MMX technology has 28 3.3V power inputs.
VCC2DET#	0	VCC2 detect is used in flexible motherboard implementations to configure the voltage output set-point appropriately for the VCC2 inputs of the processor.
VSS	Ι	The Pentium processor with MMX technology has 53 ground inputs.
W/R#	0	Write/read is one of the primary bus cycle definition pins. It is driven valid in the same clock as the ADS# signal is asserted. W/R# distinguishes between write and read cycles.
WB/WT#	Ι	The write back/write through input allows a data cache line to be defined as write back or write through on a line-by-line basis. As a result, it determines whether a cache line is initially in the S or E state in the data cache.

5.3 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC)-1

2.1. MTXC Signals 2.1.1.HOST INTERFACE

Name	Туре	Description
A[31:3]	I/O 3.3V/2.5V	Address Bus. A[31:3] connects to the address bus of the CPU. During CPU cycles A[31:3] are inputs. The MTXC drives A[31:3] during inquire cycles on behalf of PCI initiators. Bits A[31:26] act as inputs when RST# is active
BE[7:0]#	l 3.3V/2.5V	Byte Enables. The CPU byte enables indicate which byte lane the current CPU cycle is accessing. All eight byte lanes must be provided to the CPU if the cycle is a cacheable read regardless of the state of BE[7:0]#.
ADS#	l 3.3V/2.5V	Address Status. CPU asserts ADS# in T1 of the CPU bus cycle.
BRDY#	O 3.3V/2.5V	Bus Ready. The MTXC asserts BRDY# to indicate to the CPU that data is available on reads or has been received on writes
NA#	O 3.3V/2.5V	Next Address. This signal is asserted by the MTXC to indicate to the Processor that it is ready to process a second cycle.
AHOLD	O 3.3V/2.5V	Address Hold. The MTXC asserts AHOLD when a PCI initiator is performing a cycle to DRAM. AHOLD is held for the duration of the PCI burst transfer. The MTXC will negate AHOLD when the completion of the PCI to DRAM read or write cycles complete and during PCI peer transfers. AHOLD is kept asserted while PHLDA# is asserted (i.e., duration of PIIX4 granting).
EADS#	O 3.3V/2.5V	External Address Strobe. Asserted by the MTXC to inquire the first level cache when servicing PCI master references of DRAM.
BOFF#	O 3.3V/2.5V	Back Off. Asserted by the MTXC when required to terminate a CPU cycle that was in progress.
HITM#	l 3.3V/2.5V	Hit Modified. Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the first level cache and needs to be written back.
M/IO#, D/C#, W/R#	l 3.3V/2.5V	Memory/IO; Data/Control; Write/Read. Asserted by the CPU with ADS# to indicate the type of cycle that the system needs to perform.
HLOCK#	l 3.3V/2.5V	Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS#, until the negation of HLOCK# must be atomic, i.e. no PCI activity to DRAM is allowed.
CACHE#	l 3.3V/2.5	Cache. Asserted by the CPU during a read cycle to indicate the CPU will Vperform a burst line fill. Asserted by the CPU during a write cycle to indicate the CPU will perform a burst writeback cycle. If CACHE# is asserted to indicate cacheability, the MTXC will assert KEN# either with the first BRDY#, or with NA# if NA# is asserted before the first BRDY#.

Name	Туре	Description
KEN#/INV	O 3.3V/2.5V	Ken/Invalidate. KEN#/INV functions as both the KEN# signal during CPU read cycles, and the INV signal during L1 snoop cycles. During CPU cycles, KEN#/INV is normally low. KEN#/INV is driven high during the 1st BRDY# or NA# assertion of a non-L1-cacheable CPU read cycle. KEN#/INV is driven high(low) during the EADS# assertion of a PCI master DRAM write(read) snoop cycle. Note that KEN#/INV operation during snoop cycles is independent of the FLCE bit programming.
SMIACT#	I 3.3V/2.5V	System Management Interrupt Active. This is asserted by the CPU when it is in system management mode as a result of an SMI. This signal must be sampled active with ADS# for the processor to access the SMM space of DRAM, located at A0000h, after SMM space has been loaded and locked by BIOS at system boot.
HD[63:0]	I/O 3.3V/2.5V	Host Data. These signals are connected to the CPU data bus. These signals have internal pull-down resistors.

NOTES:

All of the signals in the host interface are described in the Pentium Processor data sheet. The preceding table highlights MTXC specific uses of these signals.

2.1.2. DRAM INTERFACE

Name	Туре	Description
RAS[3:0]# Or CS[3:0]#, RAS4#/CS4#/ BA1, RAS5#/CS5#/ MA13	O 3.3V	Row Address Strobe• ASx# (EDO/FPM). These pins select the DRAM row. Chip Select-CSx# (SDRAM). These pins activate the SDRAMs. SDRAM accepts any command when its CS# pin is active low. Note: For 64Mbit SDRAM support, BA1/MA12 and MA13 are muxed with the RAS4# and RAS5# signals, respectively. When SDRAMC[bit 1]=1, BA1 and MA13 are driven out on these lines.
CAS[7:0]# or DQM[7:0]	O 3.3V	Column Address Strobe (EDO/FPM). These pins select the DRAM column. Input/Output Data Mask SDRAM). These pins act as synchronized output enables during a read cycle and a byte mask during a write cycle. The read cycles require Tdqz clock latency before the functions are actually performed. In case of a write cycle, word mask functions are performed in the same cycle (0 cycle latency).
MA[11:0]	O 3.3 V	Memory Address (EDO/FPM/SDRAM). This is the row and column address for DRAM. These buffers now include programmable size selection, as controlled by the DRAMEC[MAD] bit. For 64-Mbit SDRAM support BA1/MA12 and MA13 are muxed with the RAS4# and RAS5# signals, respectively.

5.3 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC)-2

2.1.3. SECONDARY CACHE INTERFACE

Name	Туре	Description
MWEB#	O 3.3 V	Memory Write Enable (second copy) (EDO/FPM/SDRAM). MWE# should be used as the write enable for the memory data bus. This signal has programmable buffer size selection.
MWE#	O 3.3 V	Memory Write Enable (EDO/FPM/SDRAM). MWE# should be used as the write enable for the memory data bus. This signal has programmable buffer size selection.
SRAS[A,B]#	O 3.3 V	SDRAM Row Address Strobe (SDRAM). When asserted, this signal latches Row Address on the positive edge of the clock. This signal also allows Row access and precharge. Two copies are provided for loading purpose. These signals have programmable buffer size selection.
SCAS[A,B]#	O 3.3 V	SDRAM Column Address Strobe (SDRAM). When asserted, this signal latches Column Address on the positive edge of the clock. This signal also allows Column access. Two copies provided for loading purpose. These signals have programmable buffer size selection.
CKE/MAA0	O 3.3 V	SDRAM Clock Enable (SDRAM). SDRAM clock enable pin. When this signal is negated, SDRAM enters power down mode. This signal is also muxed to provide a second copy of memory address MA0 (MAA0). The MA function is selected via DRT[bit2] (offset 67h). MTXC negates CKE (and CKEB) when SUSSTAT1# is asserted. Note that MTXC asserts CKE (and CKEB) for all rows (i.e., CKE and CKEB cannot be selectively asserted for certain rows and negated for other rows).
CKEB/MAA1	O 3.3 V	SDRAM Clock Enable (SDRAM) (second copy). SDRAM clock enable pin. When this signal is negated, SDRAM enters into power down mode. Note that this signal is not implemented in the • uspend Well?and should not be used if suspend to RAM (STR) is implemented. This signal is also muxed to provide a second copy of memory address MA1 (MAA1). The MA function is selected via DRT[bit2] (offset 67h). MTXC negates CKE (and CKEB) when SUSSTAT1# is asserted. Note that MTXC asserts CKE (and CKEB) for all rows (i.e., CKE and CKEB cannot be selectively asserted for certain rows and negated for other rows).
MD[63:0] 3.3V/5V	I/O	Memory Data. These signals are connected to the DRAM data bus. These signals have internal pull-down resistors

Name	Туре	Description
CADV#	0 3.3V	Cache Advance. Assertion causes the PBSRAM in the secondary cache to advance to the next QWord in the cache line.
CADS#	O 3.3V	Cache Address Strobe. Assertion causes the PBSRAM in the secondary cache to load the PBSRAM address register from the PBSRAM address pins.
CCS#	O 3.3V	Cache Chip Select (CCS#). The second level cache will power up, if necessary, and perform an access if this signal is asserted when CADS# is asserted. The second level cache will power down if this signal is negated when CADS# is asserted. When CCS# is negated the second level cache will ignore ADS#. If CCS# is asserted when ADS# is asserted, the second level cache will power up, if necessary, and perform an access.
COE#	0 3.3V	Cache Output Enable. The secondary cache data RAMs drive the CPUs data bus when COE# is asserted.
GWE#	0 3.3V	Global Write Enable. GWE# assertion causes all the byte lanes to be written into the secondary cache data RAMs, if they are powered up.
BWE#	0 3.3V	Byte Write Enable . Asserted low with GWE#=HIGH to enable using host • BE[7:0]# to be used to control byte lanes to pipeline burst SRAM cache.
TIO[7:0]	I/O 3.3V/5V	Tag Address. These are inputs during CPU accesses and outputs during second level cache line fills and second level cache line invalidates due to inquire cycles. These signals have internal pull-down resistors.
TWE#	0 3.3V	Tag Write Enable. When asserted, new state and tag addresses are written into the external tag.
KRQAK/ CS4_64#	I/O 3.3V	KRQAK/Chip Select 4 (for 64-Mb Technology). This pin is a dual-function signal. KRQAK is used in a DRAM Cache L2 implementation and is a bi-directional refresh request/acknowledge. The CS4_64# function is used to generate the fifth chip select line in a SDRAM L2 Cache implementation that supports five rows of 64-Mbit SDRAM. During a hard reset, this signal is sampled to determine if DRAM cache is in the system (see MTXC Strapping options). This signal has a weak internal pull-down. If SDRAMC[bit 1]=1 and DRAM cache is not present in the system (indicated by CEC[bit 5]=0, offset 53h), the CS4_64# function is selected. If DRAM cache is in the system or SDRAMC[bit 1] (offset 54h)=0, then KRQAK is used to drive the KRQAK function.

5.3 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC)-3

2.1.4. PCI INTERFACE

Name	Туре	Description
AD[31:0]	I/O 3.3/5V	Address/Data. The standard PCI address and data lines. Address is driven with FRAME# assertion, data is driven or received in following clocks.
C/BE[3:0]#	I/O 3.3/5V	Command/Byte Enable. The command is driven with FRAME# assertion, byte enables corresponding to supplied or requested data is driven on following clocks
FRAME#	I/O 3.3/5V	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
DEVSEL#	I/O 3.3/5V	Device Select. This signal is driven by the MTXC when a PCI initiator is attempting to access DRAM. DEVSEL# is asserted at medium decode time.
IRDY#	I/O 3.3/5V	Initiator Ready. Asserted when the initiator is ready for a data transfer.
TRDY#	I/O 3.3/5V	Target Ready. Asserted when the target is ready for a data transfer.
STOP#	I/O 3.3/5V	Stop. Asserted by the target to request the master to stop the current transaction.
LOCK#	I/O 3.3/5V	Lock. Used to establish, maintain, and release resource locks on PCI.
REQ[3:0]#	l 3.3/5V	PCI Request. PCI master requests for PCI bus.
GNT[3:0]#	0 3.3V	PCI Grant. Permission is given to the master to use PCI.
PHLD#	I 3.3/5V	PCI Hold. This signal comes from the expansion bridge. It is the bridge request for PCI. The MTXC will drain the DRAM write buffers, drain the CPU-to-PCI posting buffers, and acquire the host bus before granting via PHLDA#.
PHLDA#	0 3.3V	PCI Hold Acknowledge. This signal is driven by the MTXC to grant PCI to the expansion bridge. PHLDA# protocol has been modified to include support for passive release.
PAR	I/O 3.3/5V	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]. This signal should be pulled high through a weak external pull-up resistor.
CLKRUN#	I/O 3.3/5V	CLOCK RUN. An open drain output and also an input. MTXC requests the central resource (PIIX4) to start, or maintain the PCI clock by the assertion of CLKRUN#. MTXC will tri-state CLKRUN# upon negation of reset (since CLK is running upon negation of reset). External pull-up is required. Note: This signal should be connected to the PIIX4 CLKRUN# pin. However, if it is left as a no connect on the MTXC, it must be pulled low through a 100 W (pull-down resistor.
RST#	l 3.3/5V	Reset. When asserted this signal asynchronously resets the MTXC. The PCI signals also tri-state compliant to PCI Rev 2.0 and 2.1 specifications.

2.1.5. TEST AND CLOCK

Name	Туре	Description
TEST#	I 3.3/5V	Test In. NAND tree mode is activated by driving this pin low. The test mode selected depends on the state of REQ[3:0]#. This pin should be pulled high with an external pull-up during normal operation.
HCLKIN	I 3.3/2.5∨	Host Clock In. This pin receives a buffered host clock. This clock is used by all of the MTXC logic that is in the Host clock domain.
PCLKIN		PCI Clock In. This pin receives a buffered divide-by-2 host clock. This clock is used by all of the MTXC logic that is in the PCI clock domain.

2.1.6. POWER MANAGEMENT

Name	Туре	Description
SUSCLK	I 3.3V	Suspend Clock. The signal is a 32 KHz input for DRAM refresh circuitry and clocking events in suspend state. The DRAM refresh during suspend and non-suspend states is performed based on this clock. This signal has an internal pull-down resistor.
SUSSTAT1#	I 3.3V	Suspend Status. SUSSTAT1# indicates MTXC• power plane status during suspend mode. SUSSTAT1#, along with SUSCLK and RST#, define the suspend protocol between MTXC and PIIX4. This signal has an internal pull-up resistor.

2.1.7. POWER AND GROUND PINS

Name	Туре	Description
VCC	3.3V	Main voltage supply. These pins are the primary voltage supply for the MTXC core and I/O periphery and must be connected to 3.3V.
VCC (CPU)	3.3V or 2.5V	CPU Interface Voltage Supply. These pins are the primary voltage supply for the MTXC Host periphery and must be connected to either 2.5V or 3.3V, depending on the oltage level of the CPU interface. Refer to the Power sequencing requirements section for additional details.
VCC (SUS)	3.3V	Suspend Well Voltage Supply. These pins are the primary voltage supply for the MTXC suspend logic and I/O. If suspend to RAM is supported, these pins should be on an isolated power plane; otherwise, they can be connected to the same 3.3V source used for the VCC pins.
VCC5REF	3.3V or 5V	······································
VSS	0V	Ground. These pins are the ground for the MTXC.

5.3 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC)-4

2.2. MTXC Strapping Options

Name	Туре	Description
SCS	A[31:30]	Secondary Cache Size. Described in the Cache Control Register bits 7:6.
L2RAMT	A[29:28]	Initial L2 RAM Type. Described in the Cache Control Register bits 5:4.
DRAM Cache	KRQAK	DRAM Cache L2 Present Upon Reset Negation. This bit is sampled to detect DRAM L2 cache. If sampled high, a DRAM Cache is present. A weak pulldown is provided internally. A DRAM cache module should implement a pull-up on this pin that overrides the weak pulldown. BIOS does not have to be aware of this, this information is used by the MTXC to maintain optimal Pburst timings.
25VD	A26	2.5V Voltage Detection. This bit is used to determine the voltage level (3.3V or 2.5V)of the host clock connected to the host clock pin and the voltage on the VCC(CPU)pins. An external pull-down or pull-up resistor is required on this pin (pulled down for 2.5V and pulled up for 3.3V).
HFD	A27	Frequency Detection. BIOS can use this bit to determine if the system is 60 MHz (external pull-up) or 66 MHz (no strapping is present) as described in the DRTH Register, bit 7. DRTH[bit 7] register is initialized with the inverted value of pin A27 upon reset negation. The A27 input buffer includes a weak pulldown resistor which will force DRTH[bit 7] to default to 1 if no strapping is present.

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-1

PIIX4 Signals PCI BUS INTERFACE

Name	Туре	Description
AD[31:0]	1/0	PCI ADDRESS/DATA. AD[31:0] is a multiplexed address and data bus. During the first clock of a transaction, AD[31:0] contain a physical byte address (32 bits). During subsequent clocks, AD[31:0] contain data. A PIIX4 Bus transaction consists of an address phase followed by one or more data phases. Little-endian byte ordering is used. AD[7:0] define the least significant byte (LSB) and AD[31:24] the most significant byte (MSB). When PIIX4 is a Target, AD[31:0] are inputs during the address phase of a transaction. During the following data phase(s), PIIX4 may be asked to supply data on AD[31:0] for a PCI read, or accept data for a PCI write. As an Initiator, PIIX4 drives a valid address on AD[31:2] and 0 on AD[1:0] during the address phase, and drives write or latches read data on AD[31:0] during the data phase. During Reset: High-Z After Reset: High-Z During POS: High-Z
C/BE#[3:0]	I/O	BUS COMMAND AND BYTE ENABLES. The command and byte enable signals are multiplexed on the same PCI pins. During the address phase of a transaction, C/BE[3:0]# define the bus command. During the data phase C/BE[3:0]# are used as Byte Enables. The Byte Enables determine which byte lanes carry meaningful data. C/BE0# applies to byte 0, C/BE1# to byte 1, etc. PIIX4 drives C/BE[3:0]# as an Initiator and monitors C/BE[3:0]# as a Target. During Reset: High-Z After Reset: High-Z During POS: High-Z
CLKRUN#	I/O	CLOCK RUN#. This signal is used to communicate to PCI peripherals that the PCI clock will be stopped. Peripherals can assert CLKRUN# to request that the PCI clock be restarted or to keep it from stopping. This function follows the protocol described in the PCI Mobile Design Guide, Revision 1.0. During Reset: Low After Reset: Low During POS: High
DEVSEL#	I/O	DEVICE SELECT. PIIX4 asserts DEVSEL# to claim a PCI transaction through positive decoding or subtractive decoding (if enabled). As an output, PIIX4 asserts DEVSEL# when it samples IDSEL active in configuration cycles to PIIX4 configuration registers. PIIX4 also asserts DEVSEL# when an internal PIIX4 address is decoded or when PIIX4 subtractively or positively decodes a cycle for the ISA/EIO bus or IDE device. As an input, DEVSEL# indicates the response to a PIIX4 initiated transaction and is also sampled when deciding whether to subtractively decode the cycle. DEVSEL# is tri-stated from the leading edge of PCIRST#. DEVSEL# remains tri-stated until driven by PIIX4 as a target. During Reset : High-Z After Reset : High-Z During POS : High-Z
FRAME#	1/0	CYCLE FRAME. FRAME# is driven by the current Initiator to indicate the beginning and duration of an access. While FRAME# is asserted data transfers continue. When FRAME# is negated the transaction is in the final data phase. FRAME# is an input to PIIX4 when it is the Target. FRAME# is an output when PIIX4 is the initiator. FRAME# remains tri-stated until driven by PIIX4 as an Initiator. During Reset: High-Z After Reset: High-Z During POS: High-Z

Name	Туре	Description
IDSEL	-	INITIALIZATION DEVICE SELECT. IDSEL is used as a chip select during PCI configuration read and write cycles. PIIX4 samples IDSEL during the address phase of a transaction. If IDSEL is sampled active, and the bus command is a configuration read or write, PIIX4 responds by asserting DEVSEL# on the next cycle.
IRDY#	I/O	INITIATOR READY. IRDY# indicates PIIX4 ability, as an Initiator, to complete the current data phase of the transaction. It is used in conjunction with TRDY#. A data phase is completed on any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates PIIX4 has valid data present on AD[31:0]. During a read, it indicates PIIX4 is prepared to latch data. IRDY# is an input to PIIX4 when PIIX4 is the Target and an output when PIIX4 is an Initiator. IRDY# remains tri-stated until driven by PIIX4 as a master. During Reset: High-Z After Reset: High-Z During POS: High-Z
PAR	0	CALCULATED PARITY SIGNAL. PAR is • ven?parity and is calculated on 36 bits; AD[31:0] plus C/BE[3:0]#. • ven?parity means that the number of ? • within the 36 bits plus PAR are counted and the sum is always even. PAR is always calculated on 36 bits regardless of the valid byte enables. PAR is generated for address and data phases and is only guaranteed to be valid one PCI clock after the corresponding address or data phase. PAR is driven and tri-stated identically to the AD[31:0] lines except that PAR is delayed by exactly one PCI clock. PAR is an output during the address phase (delayed one clock) for all PIIX4 initiated transactions. It is also an output during the data phase (delayed one clock) when PIIX4 is the Initiator of a PCI write transaction, and when it is the Target of a read transaction. During Reset: High-Z After Reset: High-Z During POS: High-Z
PCIRST#	0	PCI RESET. PIIX4 asserts PCIRST# to reset devices that reside on the PCI bus. PIIX4 asserts PCIRST# during power-up and when a hard reset sequence is initiated through the RC register. PCIRST# is driven inactive a minimum of 1 ms after PWROK is driven active. PCIRST# is driven for a minimum of 1 ms when initiated through the RC register. PCIRST# is driven for a minimum of 1 ms when initiated through the RC register. PCIRST# is driven for a minimum of 1 ms when initiated through the RC register. PCIRST# is driven for a minimum of 1 ms when initiated through the RC register. PCIRST# is driven asynchronously relative to PCICLK. During Reset: Low After Reset: High During POS: High
PHOLD#	0	PCI HOLD. An active low assertion indicates that PIIX4 desires use of the PCI Bus. Once the PCI arbiter has asserted PHLDA# to PIIX4, it may not negate it until PHOLD# is negated by PIIX4. PIIX4 implements the passive release mechanism by toggling PHOLD# inactive for one PCICLK. During Reset: High-Z After Reset: High During POS: High
PHLDA#	Ι	PCI HOLD ACKNOWLEDGE. An active low assertion indicates that PIIX4 has been granted use of the PCI Bus. Once PHLDA# is asserted, it cannot be negated unless PHOLD# is negated first.
SERR#	I/O	SYSTEM ERROR. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, PIIX4 can be programmed to generate a non-maskable interrupt (NMI) to the CPU. During Reset: High-Z After Reset: High-Z During POS: High-Z

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-2

Name	Туре	Description
STOP#	I/O	STOP. STOP# indicates that PIIX4, as a Target, is requesting an initiator to stop the current transaction. As an Initiator, STOP# causes PIIX4 to stop the current transaction. STOP# is an output when PIIX4 is a Target and an input when PIIX4 is an Initiator. STOP# is tri-stated from the leading edge of PCIRST#. STOP# remains tri-stated until driven by PIIX4 as a slave. During Reset: High-Z After Reset: High-Z During POS: High-Z
TRDY#		TARGET READY. TRDY# indicates PIIX4 • ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed when both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that PIIX4, as a Target, has place valid data on AD[31:0]. During a write, it indicates PIIX4, as a Target is prepared to latch data. TRDY# is an input to PIIX4 when PIIX4 is the Initiator and an output when PIIX4 is a Target. TRDY# is tri-stated from the leading edge of PCIRST#. TRDY# remains tri-stated until driven by PIIX4 as a slave. During Reset: High-Z After Reset: High-Z During POS: High-Z

NOTES:

All of the signals in the host interface are described in the Pentium Processor data sheet. The preceding table highlights PIIX4 specific uses of these signals.

2.1.2. ISA BUS INTERFACE

Name	Туре	Description
AEN	0	ADDRESS ENABLE. AEN is asserted during DMA cycles to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles. When negated, AEN indicates that an I/O slave may respond to address and I/O commands. When asserted, AEN informs I/O resources on the ISA bus that a DMA transfer is occurring. This signal is also driven high during PIIX4 initiated refresh cycles. During Reset: High-Z After Reset: Low During POS: Low
BALE	0	BUS ADDRESS LATCH ENABLE. BALE is asserted by PIIX4 to indicate that the address (SA[19:0], LA[23:17]) and SBHE# signal lines are valid. The LA[23:17] address lines are latched on the trailing edge of BALE. BALE remains asserted throughout DMA and ISA master cycles. During Reset: High-Z After Reset: Low During POS: Low
IOCHK#/ I GPI0	I/O	CHANNEL CHECK. IOCHK# can be driven by any resource on the ISA bus. When asserted, it indicates that a parity or an uncorrectable error has occurred for a device or memory on the ISA bus. A NMI will be generated to the CPU if the NMI generation is enabled. If the EIO bus is used, this signal becomes a general purpose input.

Name	Туре	Description
IOCHRDY	I/O	I/O CHANNEL READY. Resources on the ISA Bus negate IOCHRDY to indicate that wait states are required to complete the cycle. This signal is normally high. IOCHRDY is an input when PIIX4 owns the ISA Bus and the CPU or a PCI agent is accessing an ISA slave, or during DMA transfers. IOCHRDY is output when an external ISA Bus Master owns the ISA Bus and is accessing DRAM or a PIIX4 register. As a PIIX4 output, IOCHRDY is driven inactive (low) from the falling edge of the ISA commands. After data is available for an ISA master read or PIIX4 floats IOCHRDY. The 70 ns includes both the drive time and the time it takes PIIX4 floats IOCHRDY. PIIX4 does not drive this signal when an ISA Bus master is accessing an ISA Bus slave. During Reset: High-Z After Reset: High-Z During POS: High-Z
IOCS16#	I	16-BIT I/O CHIP SELECT. This signal is driven by I/O devices on the ISA Bus to indicate support for 16-bit I/O bus cycles.
IOR#	I/O	I/O READ. IOR# is the command to an ISA I/O slave device that the slave may drive data on to the ISA data bus (SD[15:0]). The I/O slave device must hold the data valid until after IOR# is negated. IOR# is an output when PIIX4 owns the ISA Bus. IOR# is an input when an external ISA master owns the ISA Bus. During Reset: High-Z After Reset: High During POS: High
IOW#	I/O	I/O WRITE. IOW# is the command to an ISA I/O slave device that the slave may latch data from the ISA data bus (SD[15:0]). IOW# is an output when PIIX4 owns the ISA Bus. IOW# is an input when an external ISA master owns the ISA Bus. During Reset: High-Z After Reset: High During POS: High
LA[23:17] / GPO[7:1]	I/O	ISA LA[23:17]. LA[23:17] address lines allow accesses to physical memory on the ISA Bus up to 16 Mbytes. LA[23:17] are outputs when PIIX4 owns the ISA Bus. The LA[23:17] lines become inputs whenever an ISA master owns the ISA Bus. If the EIO bus is used, these signals become a general purpose output. During Reset: High-Z After Reset: Undefined During POS: Last LA/GPO
MEMCS16#	I/O	MEMORY CHIP SELECT 16. MEMCS16# is a decode of LA[23:17] without any qualification of the command signal lines. ISA slaves that are 16-bit memory devices drive this signal low. PIIX4 ignores MEMCS16# during I/O access cycles and refresh cycles. MEMCS16# is an input when PIIX4 owns the ISA Bus. PIIX4 drives this signal low during ISA master to PCI memory cycles. During Reset: High-Z After Reset: High-Z During POS: High-Z
MEMR#	I/O	MEMORY READ. MEMR# is the command to a memory slave that it may drive data onto the ISA data bus. MEMR# is an output when PIIX4 is a master on the ISA Bus. MEMR# is an input when an ISA master, other than PIIX4, owns the ISA Bus. This signal is also driven by PIIX4 during refresh cycles. For DMA cycles, PIIX4, as a master, asserts MEMR#. During Reset: High-Z After Reset: High During POS: High

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-3

Name	Туре	Description
MEMW#	I/O	MEMORY WRITE. MEMW# is the command to a memory slave that it may latch data from the ISA data bus. MEMW# is an output when PIIX4 owns the ISA Bus. MEMW# is an input when an ISA master, other than PIIX4, owns the ISA Bus. For DMA cycles, PIIX4, as a master, asserts MEMW#. During Reset: High-Z After Reset: High During POS: High
REFRESH#	I/O	REFRESH. As an output, REFRESH# is used by PIIX4 to indicate when a refresh cycle is in progress. It should be used to enable the SA[7:0] address to the row address inputs of all banks of dynamic memory on the ISA Bus. Thus, when MEMR# is asserted, the entire expansion bus dynamic memory is refreshed. Memory slaves must not drive any data onto the bus during refresh. As an output, this signal is driven directly onto the ISA Bus. This signal is an output only when PIIX4 DMA refresh controller is a master on the bus responding to an internally generated request for refresh. As an input, REFRESH# is driven by 16-bit ISA Bus masters to initiate refresh cycles. During Reset: High-Z After Reset: High During POS: High
RSTDRV	0	RESET DRIVE. PIIX4 asserts RSTDRV to reset devices that reside on the ISA/EIO Bus. PIIX4 asserts this signal during a hard reset and during power-up. RSTDRV is asserted during power-up and negated after PWROK is driven active. RSTDRV is also driven active for a minimum of 1 ms if a hard reset has been programmed in the RC register. During Reset: High After Reset: Low During POS: Low
SA[19:0]	I/O	SYSTEM ADDRESS[19:0]. These bi-directional address lines define the selection with the granularity of 1 byte within the 1-Megabyte section of memory defined by the LA[23:17] address lines. The address lines SA[19:17] that are coincident with LA[19:17] are defined to have the same values as LA[19:17] for all memory cycles. For I/O accesses, only SA[15:0] are used, and SA[19:16] are undefined. SA[19:0] are outputs when PIIX4 owns the ISA Bus. SA[19:0] are inputs when an external ISA Master owns the ISA Bus. During Reset: High-Z After Reset: Undefined During POS: Last SA
SBHE#	I/O	SYSTEM BYTE HIGH ENABLE. SBHE# indicates, when asserted, that a byte is being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated during refresh cycles. SBHE# is an output when PIIX4 owns the ISA Bus. SBHE# is an input when an external ISA master owns the ISA Bus. During Reset: High-Z After Reset: Undefined During POS: High
SD[15:0]	I/O	SYSTEM DATA. SD[15:0] provide the 16-bit data path for devices residing on the ISA Bus. SD[15:8] correspond to the high order byte and SD[7:0] correspond to the low order byte. SD[15:0] are undefined during refresh. During Reset: High-Z After Reset: Undefined During POS: High-Z
SMEMR#	0	STANDARD MEMORY READ. PIIX4 asserts SMEMR# to request an ISA memory slave to drive data onto the data lines. If the access is below the 1-Mbyte range (00000000h?00FFFFh) during DMA compatible, PIIX4 master, or ISA master cycles, PIIX4 asserts SMEMR#. SMEMR# is a delayed version of MEMR#. During Reset: High-Z After Reset: High During POS: High

Name	Туре	Description
SMEMW#	0	STANDARD MEMORY WRITE. PIIX4 asserts SMEMW# to request an ISA memory slave to accept data from the data lines. If the access is below the 1-Mbyte range (0000000h?00FFFFFh) during DMA compatible, PIIX4 master, or ISA master cycles, PIIX4 asserts SMEMW#. SMEMW# is a delayed version of MEMW#. During Reset: High-Z After Reset: High During POS: High
ZEROWS#	Ι	ZERO WAIT STATES. An ISA slave asserts ZEROWS# after its address and command signals have been decoded to indicate that the current cycle can be shortened. A 16-bit ISA memory cycle can be reduced to two SYSCLKs. An 8-bit memory or I/O cycle can be reduced to three SYSCLKs. ZEROWS# has no effect during 16-bit I/O cycles. If IOCHRDY is negated and ZEROWS# is asserted during the same clock, then ZEROWS# is ignored and wait states are added as a function of IOCHRDY.

2.1.3. X-BUS INTERFACE

Name	Туре	Description
A20GATE	I	ADDRESS 20 GATE. This input from the keyboard controller is logically combined with bit 1 (FAST_A20) of the Port 92 Register, which is then output via the A20M# signal.
BIOSCS#	0	BIOS CHIP SELECT. This chip select is driven active during read or write accesses to enabled BIOS memory ranges. BIOSCS# is driven combinatorially from the ISA addresses SA[16:0] and LA[23:17], except during DMA cycles. During DMA cycles, BIOSCS# is not generated. During Reset: High After Reset: High During POS: High
KBCCS#/ GPO26	0	KEYBOARD CONTROLLER CHIP SELECT. KBCCS# is asserted during I/O read or write accesses to KBC locations 60h and 64h. It is driven combinatorially from the ISA addresses SA[19:0] and LA[23:17]. If the keyboard controller does not require a separate chip select, this signal can be programmed to a general purpose output. During Reset: High After Reset: High During POS: High/GPO
MCCS#	0	MICROCONTROLLER CHIP SELECT. MCCS# is asserted during I/O read or write accesses to IO locations 62h and 66h. It is driven combinatorially from the ISA addresses SA[19:0] and LA[23:17]. During Reset: High After Reset: High During POS: High
PCS0# PCS1#	0	PROGRAMMABLE CHIP SELECTS. These active low chip selects are asserted for ISA I/O cycles which are generated by PCI masters and which hit the programmable I/O ranges defined in the Power Management section. The X-Bus buffer signals (XOE# and XDIR#) are enabled while the chip select is active. (i.e., it is assumed that the peripheral which is selected via this pin resides on the X-Bus.) During Reset: High After Reset: High During POS: High
RCIN#	I	RESET CPU. This signal from the keyboard controller is used to generate an INIT signal to the CPU. 22

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-4

2.1.4. DMA SIGNALS

Name	Туре	Description	Name	Туре	Description
RTCALE/		REAL TIME CLOCK ADDRESS LATCH ENABLE. RTCALE is used to latch the GP025appropriate memory address into the RTC. A write to port 70h with the appropriate RTC memory address that will be written to or read from causes RTCALE to be asserted. RTCALE is asserted on falling IOW# and remains asserted for two SYSCLKs. If the internal Real Time Clock is used, this signal can be programmed as a general purpose output. During Reset: Low After Reset: Low During POS: Low/GPO	DACK[0,1,2,3]# DACK[5,6,7]#	0	DMA ACKNOWLEDGE. The DACK# output lines indicate that a request for DMA service has been granted by PIIX4 or that a 16-bit master has been granted the bus. The active level (high or low) is programmed via the DMA Command Register. These lines should be used to decode the DMA slave device with the IOR# or IOW# line to indicate selection. If used to signal acceptance of a bus master request, this signal indicates when it is legal to assert MASTER#. If the DREQ goes inactive prior to DACK# being asserted, the DACK# signal will not be asserted.
RTCCS#/ GPO24	0	REAL TIME CLOCK CHIP SELECT. RTCCS# is asserted during read or write I/O accesses to RTC location 71h. RTCCS# can be tied to a pair of external OR gates to			During Reset: High After Reset: High During POS: High
		generate the real time clock read and write command signals. If the internal Real Time Clock is used, this signal can be programmed as a general purpose output. During Reset: High After Reset: High During POS: High/GPO	DREQ[0,1,2,3] DREQ[5,6,7]	I	DMA REQUEST. The DREQ lines are used to request DMA service from PIIX4 DMA controller or for a 16-bit master to gain control of the ISA expansion bus. The active level (high or low) is programmed via the DMA Command Register. All linactive to active edges of DREQ are assumed to be asynchronous. The request
XDIR#/ GPO22		X-BUS TRANSCEIVER DIRECTION. XDIR# is tied directly to the direction control of a 74?45 that buffers the X-Bus data, XD[7:0]. XDIR# is asserted (driven low) for all I/O			must remain active until the appropriate DACKx# signal is asserted.
		read cycles regardless if the accesses is to a PIIX4 supported device. XDIR# is asserted for memory cycles only if BIOS or APIC space has been decoded. For PCI master initiated read cycles, XDIR# is asserted from the falling edge of either IOR# or MEMR# (from MEMR# only if BIOS or APIC space has been decoded), depending on the cycle type. For ISA master-initiated read cycles, XDIR# is asserted from the falling edge of either IOR# or MEMR# (from MEMR# only if BIOS space has been decoded).	REQ[A:C]#/ GPI[2:4]	I	PC/PCI DMA REQUEST. These signals are the DMA requests for PC/PCI protocol. They are used by a PCI agent to request DMA services and follow the PCI Expansion Channel Passing protocol as defined in the <i>PCI DMA</i> section. If the PC/PCI request is not needed, these pins can be used as general-purpose inputs.
		depending on the cycle type. When the rising edge of IOR# or MEMR# occurs, PIIX4 negates XDIR#. For DMA read cycles from the X-Bus, XDIR# of two low from DACKx# falling and negated from DACKx# rising. At all other times, XDIR# is negated high. If the X-Bus not used, then this signal can be programmed to be a general purpose output. During Reset: High After Reset: High During POS: High/GPO	GNT[A:C]#/ GPO[9:11]	0	PC/PCI DMA ACKNOWLEDGE. These signals are the DMA grants for PC/PCI protocol. They are used by a PIIX4 to acknowledge DMA services and follow the PCI Expansion Channel Passing protocol as defined in the <i>PCI DMA</i> section. If the PC/PCI request is not needed, these pins can be used as general-purpose outputs. During Reset: High After Reset: High During POS: High/GPO
XOE#/ GPO23		 X-BUS TRANSCEIVER OUTPUT ENABLE. XOE# is tied directly to the output enable of a 74?45 that buffers the X-Bus data, XD[7:0], from the system data bus, SD[7:0]. XOE# is asserted anytime a PIIX4 supported X-Bus device is decoded, and the devices decode is enabled in the X-Bus Chip Select Enable Register (BIOSCS#, KBCCS#, RTCCS#, MCCS#) or the Device Resource B (PCCS0#) and Device Resource C (PCCS1#). XOE# is asserted from the falling edge of the ISA commands (IOR#, IOW#, MEMR#, or MEMW#) for PCI Master and ISA master-initiated cycles. XOE# is negated from the rising edge of the ISA command signals for PCI Master initiated cycles and the SA[16:0] and LA[23:17] address for ISA master-initiated cycles. XOE# is not generated during any access to an X-Bus peripheral in which its decode space has been disabled. If an X-Bus not used, then this signal can be programmed to be a general purpose output. During Reset: High After Reset: High During POS: High/GPO 	тс	0	TERMINAL COUNT. PIIX4 asserts TC to DMA slaves as a terminal count indicator. PIIX4 asserts TC after a new address has been output, if the byte count expires with that transfer. TC remains asserted until AEN is negated, unless AEN is negated during an autoinitialization. TC is negated before AEN is negated during an autoinitialization. During Reset: Low After Reset: Low During POS: Low

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-5

2.1.5. INTERRUPT CONTROLLER/APIC SIGNALS

Name	Туре	Description	Name	Туре	Description
APICACK#/ GPO12	0	APIC ACKNOWLEDGE. This active low output signal is asserted by PIIX4 after its internal buffers are flushed in response to the APICREQ# signal. When the I/O APIC samples this signal asserted it knows that PIIX4 • buffers are flushed and that it can proceed to send the APIC interrupt. The APICACK# output is synchronous to PCICLK. If the external APIC is not used, then this is a general-purpose output. During Reset: High After Reset: High During POS: High/GPO	IRQ8#/ GPI6	I/O	IRQ 8#. IRQ8# is always an active low edge triggered interrupt and can not be modified by software. IRQ8# must remain asserted until after the interrupt is acknowledged. If the input goes inactive before this time, a default IRQ7 is reported in response to the interrupt acknowledge cycle. If using the internal RTC, then this can be programmed as a general-purpose input. If enabling an APIC, this signal becomes an output and must not be programmed as a general purpose input.
APICCS#/ GPO13	0	APIC CHIP SELECT. This active low output signal is asserted when the APIC Chip Select is enabled and a PCI originated cycle is positively decoded within the programmed I/O APIC address space. If the external APIC is not used, this pin is a general-purpose output. During Reset: High After Reset: High During POS: High/GPO	IRQ9OUT#/ GPO29	0	IRQ9OUT#. IRQ9OUT# is used to route the internally generated SCI and SMBus interrupts out of the PIIX4 for connection to an external IO APIC. If APIC is disabled, this signal pin is a General Purpose Output. During Reset: High After Reset: High During POS: IRQ9OUT#/GPO
APICREQ#/ GPI5	I	APIC REQUEST. This active low input signal is asserted by an external APIC device prior to sending an interrupt over the APIC serial bus. When PIIX4 samples this pin active it will flush its F-type DMA buffers pointing towards PCI. Once the buffers are flushed, PIIX4 asserts APICACK# which indicates to the external APIC that it can proceed to send the APIC interrupt. The APICREQ# input must be synchronous to PCICLK. If the external APIC is not used, this pin is a general-purpose input. INTR OD INTERRUPT. See CPU Interface Signals.	IRQ 12/M	I	INTERRUPT REQUEST 12. In addition to providing the standard interrupt function as described in the pin description for IRQ[3:7,9:11,14:15], this pin can also be programmed to provide the mouse interrupt function. When the mouse interrupt function is selected, a low to high transition on this signal is latched by PIIX4 and an INTR is generated to the CPU as IRQ12. An internal IRQ12 interrupt continues to be generated until a Reset or an I/O read access to address 60h (falling edge of IOR#) is detected.
IRQ0/	0	INTERRUPT REQUEST 0. This output reflects the state of the internal IRQ0 signal GPO14 from the system timer. If the external APIC is not used, this pin is a general-purpose output. During Reset: Low After Reset: Low During POS: IRQ0/GPO	PIRQ[A:D]#	e I/OD PCI	PROGRAMMABLE INTERRUPT REQUEST. The PIRQx# signals are active low, level sensitive, shareable interrupt inputs. They can be individually steered to ISA interrupts IRQ [3:7,9:12,14:15]. The USB controller uses PIRQD# as its output signal.
IRQ1	I	INTERRUPT REQUEST 1. IRQ1 is always edge triggered and can not be modified by software to level sensitive. A low to high transition on IRQ1 is latched by PIIX4. IRQ1 must remain asserted until after the interrupt is acknowledged. If the input goes inactive before this time, a default IRQ7 is reported in response to the interrupt acknowledge cycle.	SERIRQ / GPI7	I/O	SERIAL INTERRUPT REQUEST. Serial interrupt input decoder, typically used in conjunction with the Distributed DMA protocol. If not using serial interrupts, this pin can be used as a general-purpose input.
IRQ 3:7, 9:11, 14:15	I	INTERRUPT REQUESTS 3:7, 9:11, 14:15. The IRQ signals provide both system board components and ISA Bus I/O devices with a mechanism for asynchronously interrupting the CPU. These interrupts may be programmed for either an edge sensitive or a high level sensitive assertion mode. Edge sensitive is the default configuration. An active IRQ input must remain asserted until after the interrupt is acknowledged. If the input goes inactive before this time, a default IRQ7 is reported in response to the interrupt acknowledge cycle.			

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-6

E 2.1.6. CPU INTERFACE SIGNALS

Name	Туре	Description	Name	Туре	Description
A20M#	OD	ADDRESS 20 MASK. PIIX4 asserts A20M# to the CPU based on combination of Port 92 Register, bit 1 (FAST_A20), and A20GATE input signal. During Reset: High-Z After Reset: High-Z During POS: High-Z	NMI	OD	NON-MASKABLE INTERRUPT. NMI is used to force a nonmaskable interrupt to the CPU. PIIX4 generates an NMI when either SERR# or IOCHK# is asserted, depending on how the NMI Status and Control Register is programmed. The CPU detects an NMI
CPURST	OD	power-up and when a hard reset sequence is initiated through the RC register. CPURST is driven inactive a minimum of 2 ms after PWROK is driven active. CPURST is driven active for a minimum of 2 ms when initiated through the RC register. The inactive edge of CPURST is driven synchronously to the rising edge of PCICLK. If a hard reset is initiated through the RC register, PIIX4 resets its internal registers (in both core and suspend wells) to their default state. This signal is active high for Pentium processor and active-low for Pentium II processor			when it detects a rising edge on NMI. After the NMI interrupt routine processes the interrupt, the NMI status bits in the NMI Status and Control Register are cleared by software. The NMI interrupt routine must read this register to determine the source of the interrupt. The NMI is reset by setting the corresponding NMI source enable/disable bit in the NMI Status and Control Register. To enable NMI interrupts, the two NMI enable/disable bits in the register must be set to 0, and the NMI mask bit in the NMI Enable/Disable and Real Time Clock Address Register must be set to 0. Upon PCIRST#, this signal is driven low. During Reset: Low After Reset: Low During POS: Low
		as determined by CONFIG1 signal. For values During Reset , After Reset , and During POS , see the <i>Suspend/Resume</i> <i>and Resume Control Signaling</i> section.	SLP#	OD	SLEEP. This signal is output to the Pentium II processor in order to put it into Sleep state. For Pentium processor it is a No Connect. During Reset: High-Z After Reset: High-Z During POS: High-Z
FERR#	I	NUMERIC COPROCESSOR ERROR. This pin functions as a FERR# signal supporting coprocessor errors. This signal is tied to the coprocessor error signal on the CPU. If FERR# is asserted, PIIX4 generates an internal IRQ13 to its interrupt controller unit. PIIX4 then asserts the INT output to the CPU. FERR# is also used to gate the IGNNE# signal to ensure that IGNNE# is not asserted to the CPU unless FERR# is active.		OD	SYSTEM MANAGEMENT INTERRUPT. SMI# is an active low synchronous output that is asserted by PIIX4 in response to one of many enabled hardware or software events. The CPU recognizes the falling edge of SMI# as the highest priority interrupt in the system, with the exception of INIT, CPURST, and FLUSH. During Reset: High-Z After Reset: High-Z During POS: High-Z
IGNNE#	OD	IGNORE NUMERIC EXCEPTION. This signal is connected to the ignore numeric exception pin on the CPU. IGNNE# is only used if the PIIX4 coprocessor error reporting function is enabled. If FERR# is active, indicating a coprocessor error, a write to the Coprocessor Error Register (F0h) causes the IGNNE# to be asserted. IGNNE# remains asserted until FERR# is negated. If FERR# is not asserted when the Coprocessor Error Register is written, the IGNNE# signal is not asserted. During Reset: High-Z After Reset: High-Z During POS: High-Z	STPCLK#	OD	STOP CLOCK. STPCLK# is an active low synchronous output that is asserted by PIIX4 in response to one of many hardware or software events. STPCLK# connects directly to the CPU and is synchronous to PCICLK. During Reset: High-Z After Reset: High-Z During POS: High-Z
INIT	OD	INITIALIZATION. INIT is asserted in response to any one of the following conditions. When the System Reset bit in the Reset Control Register is reset to 0 and the Reset CPU bit toggles from 0 to 1, PIIX4 initiates a soft reset by asserting INIT. PIIX4 also asserts INIT if a Shut Down Special cycle is decoded on the PCI Bus, if the RCIN# signal is asserted, or if a write occurs to Port 92h, bit 0. When asserted, INIT remains asserted for approximately 64 PCI clocks before being negated. This signal is active high for Pentium processor and active-low for Pentium II processor as determined by CONFIG1 signal. Pentium Processor: During Reset: Low After Reset: Low During POS: Low Pentium II processor: During Reset: High After Reset: High During POS: High			
INTR	OD	CPU INTERRUPT. INTR is driven by PIIX4 to signal the CPU that an interrupt request is pending and needs to be serviced. It is asynchronous with respect to SYSCLK or PCICLK and is always an output. The interrupt controller must be programmed following PCIRST# to ensure that INTR is at a known state. During Reset: Low After Reset: Low During POS: Low			

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-7

2.1.7. CLOCKING SIGNALS

Name	Туре	Description	Name	Туре	Description
	·ypc	2000/ption	Name	iype	Description
CLK48	1	48-MHZ CLOCK. 48-MHz clock used by the internal USB host controller. This signal may be stopped during suspend modes.	PDCS3#	0	PRIMARY DISK CHIP SELECT FOR 3F03F7 RANGE. For ATA control register block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Primary IDE connector.
PCICLK	I	FREE-RUNNING PCI CLOCK. A clock signal running at 30 or 33 MHz, PCICLK provides timing for all transactions on the PCI Bus. All other PCI signals are sampled on the rising edge of PCICLK, and all timing parameters are defined with respect to this edge. Because many of the circuits in PIIX4 run off the PCI clock, this signal MUST be			If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High
		kept active, even if the PCI bus clock is not active.	PDD[15:0]	1/0	PRIMARY DISK DATA[15:0]. These signals are used to transfer data to or from the IDE
osc	I	14.31818-MHZ CLOCK. Clock signal used by the internal 8254 timer. This clock signal may be stopped during suspend modes.			device. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is
RTCX1, RTCX2	I/O	RTC CRYSTAL INPUTS: These connected directly to a 32.768-kHz crystal. External capacitors are required. These clock inputs are required even if the internal RTC is not			used for the Primary Master connector. During Reset: High-Z After Reset: UndefinedDuring POS: PDD
		being used.	PDDACK#	0	PRIMARY DMA ACKNOWLEDGE. This signal directly drives the IDE device DMACK#
SUSCLK	0	SUSPEND CLOCK. 32.768-kHz output clock provided to the Host-to-PCI bridge used for maintenance of DRAM refresh. This signal is stopped during Suspend-to-Disk and Soft Off modes. For values During Reset, After Reset, and During POS, see the <i>Suspend/Resume and Resume Control Signaling</i> section.			signal. It is asserted by PIIX4 to indicate to IDE DMA slave devices that a given data transfer cycle (assertion of PDIOR# or PDIOW#) is a DMA data transfer cycle. This signal is used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector.
SYSCLK	0	ISA SYSTEM CLOCK. SYSCLK is the reference clock for the ISA bus. It drives the ISA bus directly. The SYSCLK is generated by dividing PCICLK by 4. The SYSCLK frequencies supported are 7.5 MHz and 8.33 MHz. For PCI accesses to the ISA bus, SYSCLK may be stretched low to synchronize BALE falling to the rising edge of			If the IDE signals are configured for Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High
		SYSCLK. During Reset: Running After Reset: Running During POS: Low	PDDREQ	1	PRIMARY DISK DMA REQUEST. This input signal is directly driven from the IDE device DMARQ signal. It is asserted by the IDE device to request a data transfer, and
					used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel.

2.1.8. IDE SIGNALS

Name	Туре	Description			
PDA[2:0]	Ο	PRIMARY DISK ADDRESS[2:0]. These signals indicate which byte in either the ATA command block or control block is being addressed. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Primary IDE connector. If the IDE signals are configured for Primary 0 and Primary 1, these signals are used for the Primary 0 connector. During Reset: High-Z After Reset: Undefined During POS: PDA			
PDCS1#		PRIMARY DISK CHIP SELECT FOR 1F0H1F7H RANGE. For ATA command register block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High			

If the IDE signals are configured for Primary and Secondary, this signal is connected to

If the IDE signals are configured for Primary Master and Primary Slave, this signal is

the corresponding signal on the Primary IDE connector.

used for the Primary Master connector.

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-8

Name	Туре	Description	Name	Туре	Description
PDIOR#	0	PRIMARY DISK IO READ. In normal IDE this is the command to the IDE device that it may drive data onto the PDD[15:0] lines. Data is latched by PIIX4 on the negation edge of PDIOR#. The IDE device is selected either by the ATA register file chip selects (PDCS1#, PDCS3#) and the PDA[2:0] lines, or the IDE DMA slave arbitration signals (PDDACK#). In an Ultra DMA/33 read cycle, this signal is used as DMARDY# which is negated by the PIIX4 to pause Ultra DMA/33 transfers. In an Ultra DMA/33 write cycle, this signal is		0	SECONDARY DISK ADDRESS[2:0]. These signals indicate which byte in either the ATA command block or control block is being addressed. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High-Z After Reset: Undefined During POS: SDA
		used as the STROBE signal, with the drive latching data on rising and falling edges of STROBE. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High	SDCS1#	0	SECONDARY CHIP SELECT FOR 170H177H RANGE. For ATA command register block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High
PDIOW#	0	PRIMARY DISK IO WRITE. In normal IDE mode, this is the command to the IDE device that it may latch data from the PDD[15:0] lines. Data is latched by the IDE device on the negation edge of PDIOW#. The IDE device is selected either by the ATA register file chip selects (PDCS1#, PDCS3#) and the PDA[2:0] lines, or the IDE DMA slave arbitration signals (PDDACK#). For Ultra DMA/33 mode, this signal is used as the STOP signal, which is used to terminate an Ultra DMA/33 transaction. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High-Z	SDCS3#	0	SECONDARY CHIP SELECT FOR 370H377H RANGE. For ATA control register block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High-Z
			SDD[15:0]	I/O	SECONDARY DISK DATA[15:0]. These signals are used to transfer data to or from the IDE device. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High-Z After Reset: Undefined During POS: SDD
PIORDY		PRIMARY IO CHANNEL READY. In normal IDE mode, this input signal is directly driven by the corresponding IDE device IORDY signal. In an Ultra DMA/33 read cycle, this signal is used as STROBE, with the PIIX4 latching data on rising and falling edges of STROBE. In an Ultra DMA/33 write cycle, this signal is used as the DMARDY# signal which is negated by the drive to pause Ultra DMA/33 transfers. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. This is a Schmitt triggered input.	SDDACK#	0	SECONDARY DMA ACKNOWLEDGE. This signal directly drives the IDE device DMACK# signal. It is asserted by PIIX4 to indicate to IDE DMA slave devices that a given data transfer cycle (assertion of SDIOR# or SDIOW#) is a DMA data transfer cycle. This signal is used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-9

2.1.9. UNIVERSAL SERIAL BUS SIGNALS

Name	Туре	Description
SDDREQ	I	SECONDARY DISK DMA REQUEST. This input signal is directly driven from the IDE device DMARQ signal. It is asserted by the IDE device to request a data transfer, and used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector.
SDIOR#	0	SECONDARY DISK IO READ. In normal IDE mode, this is the command to the IDE device that it may drive data onto the SDD[15:0] lines. Data is latched by the PIIX4 on the negation edge of SDIOR#. The IDE device is selected either by the ATA register file chip selects (SDCS1#, SDCS3#) and the SDA[2:0] lines, or the IDE DMA slave arbitration signals (SDDACK#). In an Ultra DMA/33 read cycle, this signal is used as DMARDY# which is negated by the PIIX4 to pause Ultra DMA/33 transfers. In an Ultra DMA/33 write cycle, this signal is used as the STROBE signal, with the drive latching data on rising and falling edges of STROBE. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High
SDIOW#	0	SECONDARY DISK IO WRITE. In normal IDE mode, this is the command to the IDE device that it may latch data from the SDD[15:0] lines. Data is latched by the IDE device on the negation edge of SDIOW#. The IDE device is selected either by the ATA register file chip selects (SDCS1#, SDCS3#) and the SDA[2:0] lines, or the IDE DMA slave arbitration signals (SDDACK#). In read and write cycles this signal is used as the STOP signal, which is used to terminate an Ultra DMA/33 transaction. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High
SIORDY	I	SECONDARY IO CHANNEL READY. In normal IDE mode, this input signal is directly driven by the corresponding IDE device IORDY signal. In an Ultra DMA/33 read cycle, this signal is used as STROBE, with the PIIX4 latching data on rising and falling edges of STROBE. In an Ultra DMA write cycle, this signal is used as the DMARDY# signal which is negated by the drive to pause Ultra DMA/33 transfers. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. This is a Schmitt triggered input.

Name	Туре	Description
OC[1:0]#	I	OVER CURRENT DETECT. These signals are used to monitor the status of the USB power supply lines. The corresponding USB port is disabled when its over current signal is asserted.
USBP0+, USBP0-	I/O	SERIAL BUS PORT 0. This signal pair comprises the differential data signal for USB port 0. During Reset: High-Z After Reset: High-Z During POS: High-Z
USBP1+, USBP1	I/O	SERIAL BUS PORT 1. This signal pair comprises the differential data signal for USB port 1. During Reset: High-Z After Reset: High-Z During POS: High-Z

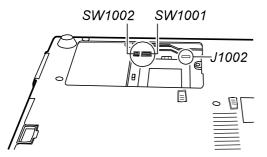
2.1.10. POWER MANAGEMENT SIGNALS

Name	Туре	Description
BATLOW#/ GPI9	I	BATTERY LOW. Indicates that battery power is low. PIIX4 can be programmed to prevent a resume operation when the BATLOW# signal is asserted. If the Battery Low function is not needed, this pin can be used as a general-purpose input.
CPU_STP#/ GPO17	0	CPU CLOCK STOP. Active low control signal to the clock generator used to disable the CPU clock outputs. If this function is not needed, then this signal can be used as a general-purpose output. For values During Reset, After Reset , and During POS , see the <i>Suspend/Resume and Resume Control Signaling</i> section.
EXTSMI#	I/OD	EXTERNAL SYSTEM MANAGEMENT INTERRUPT. EXTSMI# is a falling edge triggered input to PIIX4 indicating that an external device is requesting the system to enter SMM mode. When enabled, a falling edge on EXTSMI# results in the assertion of the SMI# signal to the CPU. EXTSMI# is an asynchronous input to PIIX4. However, when the setup and hold times are met, it is only required to be asserted for one PCICLK. Once negated EXTSMI# must remain negated for at least four PCICLKs to allow the edge detect logic to reset. EXTSMI# is asserted by PIIX4 in response to SMI# being activated within the Serial IRQ function. An external pull-up should be placed on this signal.
LID/ GPI10	I	LID INPUT. This signal can be used to monitor the opening and closing of the display lid of a notebook computer. It can be used to detect both low to high transition or a high to low transition and these transitions will generate an SMI# if enabled. This input contains logic to perform a 16-ms debounce of the input signal. If the LID function is not needed, this pin can be used as a general-purpose input.

5.4 INTEL FW82371AB PCI/ISA BRIDGE (PIIX4)-10

Name	Туре	Description	١
PCIREQ[A:D]#	Ι	PCI REQUEST. Power Management input signals used to monitor PCI Master Requests for use of the PCI bus. They are connected to the corresponding REQ[0:3]# signals on the Host Bridge.	5
PCI_STP#/	0	PCI CLOCK STOP. Active low control signal to the clock generator used to disable GPO18the PCI clock outputs. The PIIX4 free running PCICLK input must remain on. If this function is not needed, this pin can be used as a general-purpose output. For values During Reset, After Reset , and During POS , see the <i>Suspend/Resume and Resume Control Signaling</i> section.	5
PWRBTN#	I	POWER BUTTON. Input used by power management logic to monitor external system events, most typically a system on/off button or switch. This input contains logic to perform a 16-ms debounce of the input signal.	
RI# GPI12	Ι	RING INDICATE. Input used by power management logic to monitor external system events, most typically used for wake up from a modem. If this function is not needed, then this signal can be individually used as a general-purpose input.	
RSMRST#	I	RESUME RESET. This signal resets the internal Suspend Well power plane logic and portions of the RTC well logic.	1
SMBALERT#/	I	SM BUS ALERT. Input used by System Management Bus logic to generate an GPI11interrupt (IRQ or SMI) or power management resume event when enabled. If this function is not needed, this pin can be used as a general-purpose input.	
SMBCLK	I/O	SM BUS CLOCK. System Management Bus Clock used to synchronize transfer of data on SMBus. During Reset: High-Z After Reset: High-Z During POS: High-Z	Z
SMBDATA	I/O	SM BUS DATA. Serial data line used to transfer data on SMBus. During Reset: High-Z After Reset: High-Z During POS: High-Z	2
SUSA#	0	SUSPEND PLANE A CONTROL. Control signal asserted during power management suspend states. SUSA# is primarily used to control the primary power plane. This signal is asserted during POS, STR, and STD suspend states. During Reset: Low After Reset: High During POS: Low	Si de Ti C
SUSB#/ GPO15	0	SUSPEND PLANE B CONTROL. Control signal asserted during power management suspend states. SUSB# is primarily used to control the secondary power plane. This signal is asserted during STR and STD suspend states. If the power plane control is not needed, this pin can be used as a general-purpose output. During Reset: Low After Reset: High During POS: High/GPO	G

	Name	Туре	Description
	SUSC#/	0	SUSPEND PLANE C CONTROL. Control signal asserted during power GPO16management suspend states, primarily used to control the tertiary power plane. It is asserted only during STD suspend state. If the power plane control is not needed, this pin can be used as a general-purpose output. During Reset: Low After Reset: High During POS: High/GPO
	SUS_STAT1#/	0	SUSPEND STATUS 1. This signal is typically connected to the Host-to-PCI bridge GPO20and is used to provide information on host clock status. SUS_STAST1# is asserted when the system may stop the host clock, such as Stop Clock or during POS, STR,and STD suspend states. If this function is not needed, this pin can be used as a general-purpose output. During Reset: Low After Reset: High During POS: Low/GPO
	SUS_STAT2#/	0	SUSPEND STATUS 2. This signal will typically connect to other system peripherals GPO21 and is used to provide information on system suspend state. It is asserted during POS, STR, and STD suspend states. If this function is not needed, this pin can be used as a general-purpose output. During Reset: Low After Reset: High During POS: Low/GPO
;	THRM#/	I	THERMAL DETECT. Active low signal generated by external hardware to start the GPI8Hardware Clock Throttling mode. If enabled, the external hardware can force the system to enter into Hardware Clock Throttle mode by asserting THRM#. This causes PIIX4 to cycle STPCLK# at a preset programmable rate. If this function is not needed, this pin can be used as a general-purpose input.
	ZZ	0	LOW-POWER MODE FOR L2 CACHE SRAM. This signal is used to power down a GPO19cache• data SRAMs when the clock logic places the CPU into the Stop Clock. If this function is not needed, this pin can be used as a general-purpose output. During Reset: Low After Reset: Low During POS: Low


2.1.11. GENERAL PURPOSE INPUT AND OUTPUT SIGNALS

Some of the General Purpose Input and Output signals are multiplexed with other PIIX4 signals. The usage is determined by the system configuration.

The default pin usage is shown in Table 1 and Table 2. The configuration can be selected via the General Configuration register and X-Bus Chip Select register.

Name	Туре	Description
GPI[21:0]	Ι	GENERAL PURPOSE INPUTS. These input signals can be monitored via the GPIREG register located in Function 3 (Power Management) System IO Space at address PMBase+30h. See Table 1 for details.

6.SWITCH & JUMPERS SETTING

Note: To access the switches, you need to remove the CPU cooling fan.

	SW1002					
Voltage	Pin 1	Pin 2	Pin 3	Pin 4		
1.8	OFF	OFF	OFF	OFF		
1.9	OFF	OFF	OFF	ON		
2.0	OFF	OFF	ON	OFF		
2.1	OFF	OFF	ON	ON		
2.2	OFF	ON	OFF	OFF		
2.3	OFF	ON	OFF	ON		
2.4	OFF	ON	ON	OFF		
2.5	OFF	ON	ON	ON		
2.6	ON	OFF	OFF	OFF		
2.7	ON	OFF	OFF	ON		
2.8	ON	OFF	ON	OFF		
2.9	ON	OFF	ON	ON		
3.0	ON	ON	OFF	OFF		
3.1	ON	ON	OFF	ON		
3.2	ON	ON	ON	OFF		
3.3	ON	ON	ON	ON		

	SW1001					J1002	
CPU	Pin 1	Pin 2	Pin 3	Pin 4	Pin 6	Pin 7	
P55CLM-166	OFF	ON	ON	ON	OFF	ON	1-2
P55CLM-200	OFF	OFF	ON	ON	OFF	ON	1-2
Tillamook-200	OFF	OFF	ON	ON	ON	OFF	2-3
Tillamook-233	OFF	OFF	OFF	ON	ON	OFF	2-3

	SW1001
	Pin 5
Normal	ON
Clear RTC*	OFF

* Note: Make sure the AC adapter is not connected when you clear RTC.

7.ASSEMBLY & DISASSEMBLY

7.1 SYSTEM VIEW 7.1.1 RIGHT-SIDE VIEW 7.1.2 LEFT-SIDE VIEW 7.1.3 REAR VIEW 7.1.4 FRONT VIEW 7.1.5 BOTTOM VIEW

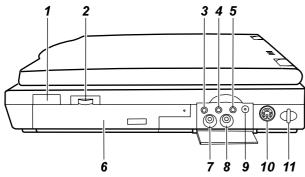
7.2 SYSTEM DISASSEMBLY

MODULAR COMPONENTS

7.2.1 RIGHT/LEFT BAY DEVICE
7.2.2 HARD DISK DRIVE
7.2.3 CPU
7.2.4 FAX/ MODEM/ VOICE CARD
7.2.5 KEYBOARD
7.2.6 MEMORY MODULE

LCD ASSEMBLY COMPONENTS

7.2.7 LCD ASSEMBLY7.2.8 LCD PANEL7.2.9 INVERTER BOARD


BASE UNIT COMPONENTS

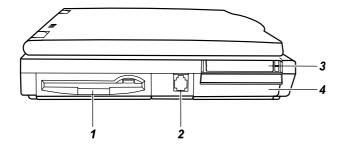
7.2.10 BOTTOM CHASSIS7.2.11 D/D BOARD7.2.12 VIDEO CAPTURE BOARD7.2.13 SYSTEM BOARD7.2.14 TOUCH-PAD BOARD

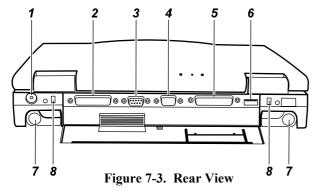
7.ASSEMBLY & DISASSEMBLY

7.1 SYSTEM VIEW

7.1.1 RIGHT-SIDE VIEW

7.1.2 LEFT-SIDE VIEW




Figure 7-2. Left-Side View

- 1. IR Port
- 2. Volume Control
- 3. Audio Input Connector
- 4. Audio Output Connector
- 5. Microphone Connector
- 6. CD-ROM Drive
- 7. Video Out Connector
- 8. Video In Connector
- 9. 5V Power Connector
- 10. PS/2 Mouse/Keyboard Port
- 11. Power Button

- 1. Floppy Disk Drive
- 2. Phone Line Connector
- 3. PC Card Slots
- 4. Hard Disk Drive

7.ASSEMBLY & DISASSEMBLY

7.1.3 REAR VIEW

7.1.4 FRONT VIEW

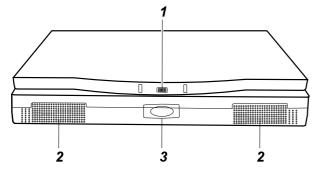


Figure 7-4. Front View

- 1. Power Connector
- 2. Parallel Port
- 3. Serial Port
- 4. VGA Port
- 5. Expansion Connector
- 6. USB Port
- 7. Legs
- 8. Kensington Lock Anchor

- 1. CCD Camera Connector
- 2. Stereo Speaker Set
- 3. Top Cover Latch

7.ASSEMBLY & DISASSEMBLY

7.1.5 BOTTOM VIEW

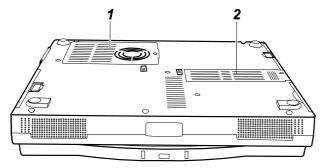
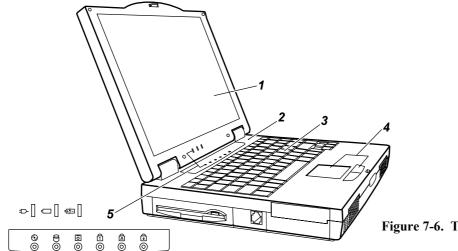



Figure 7-5. Bottom View

7.1.6 TOP-OPEN VIEW

To open the cover, press the cover latch and lift the cover.

- 1. CPU Compartment Cover
- 2. Fax/Modem/Voice Card Compartment

- 1. LCD Display
- 2. Microphone
- 3. Keyboard
- 4. Touchpad
- 5. Microphone
- 6. Indicators Panel

Figure 7-6. Top-Open View

7.ASSEMBLY & DISASSEMBLY

7.2 SYSTEM DISASSEMBLY

The section discusses at length each major component for disassembly/reassembly and show corresponding illustrations. Use the chart below to determine the disassembly sequence for removing components from the notebook.

7.2.1 RIGHT/LEFT BAY DEVICE

The left bay of the notebook can accommodate one of the following devices:

- Floppy disk drive
- AC adapter
- Battery pack
- MO drive
- Secondary hard disk drive
- Cartridge-removable hard disk drive

The right bay of the notebook can accommodate one of the following devices:

- Floppy disk drive
- CD-ROM drive
- Battery pack
- MO drive
- Secondary hard disk drive
- Cartridge-removable hard disk drive

7.ASSEMBLY & DISASSEMBLY

7.2.1 RIGHT/LEFT BAY DEVICE DISASSEMBLY

- 1. Place the notebook upside down.
- 2. Press the locking latch toward the unlocked position and pull out the device.

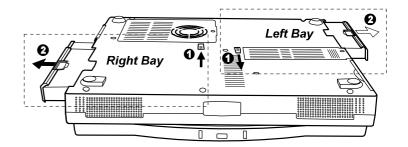
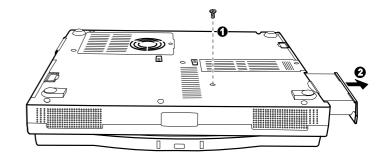


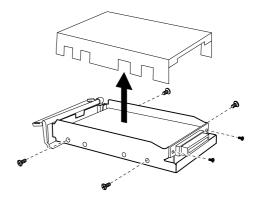
Figure 7-7. Removing the Right/Left Bay Device

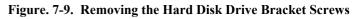
REASSEMBLY

1. Slide the device module into the right bay until the location latch clicks into the locked position.(Refer to Figure 7-7)


7.ASSEMBLY & DISASSEMBLY

7.2.2 HARD DISK DRIVE


DISASSEMBLY


- 1. Place the notebook upside down.
- 2. Remove one bottom screw and pull out the hard disk drive module.
- 3. Remove the top cover.Remove four side screw and two rear screws and detach the hard disk drive from the bracket.
- 4. Unplug the connector card.

- 1. Align the connector card with the hard disk drive connector and firmly plug the connector.
- 2. Attach the hard disk drive to the bracket.Secure with four screws on both sides and two screws on the rear of the bracket.Then fit the top cover into place.
- 3. Slide the hard disk module into the compartment and secure with one screw.

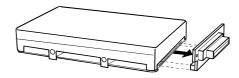
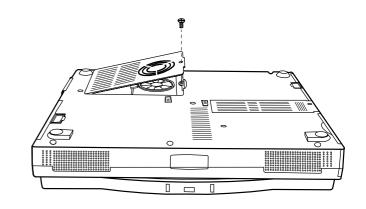


Figure. 7-10. Removing the Connector Card


7.ASSEMBLY & DISASSEMBLY

7.2.3 CPU

DISASSEMBLY

- 1. Place the notebook upside down.
- 2. To remove the compartment cover, remove one screw and lift up the cover.
- 3. To remove the CPU cooling fan, follow these steps:
 - a. Remove the four screws.
 - b. Unplug the fan power cord from the system board.
- 4. To remove the CPU, insert a flat screwdriver to the OPEN side of the socket and push the screwdriver toward the CPU to loosen the CPU.

- 1. To install the CPU, align the beveled corner on the CPU with the beveled corner of the socket and insert the CPU pins into the holes. Insert a flat screwdriver to the CLOSE side of the socket and push the screwdriver toward the CPU to the CPU in place.
- 2. Make sure SW1001,SW1002,and J1002 are set according to the CPU install.
- 3. Reconnect the fan power cord. Then, attach the CPU cooling fan to the CPU and secure with four screws.
- 4. Replace the compartment cover and secure with one screw.

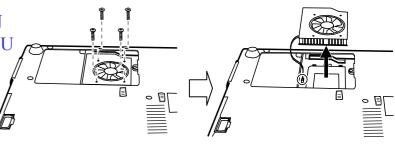


Figure 7-12. Removing the CPU Cooling Fan

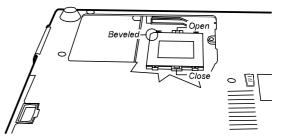


Figure 7-13. Removing the CPU

7.ASSEMBLY & DISASSEMBLY

7.2.4 FAX/ MODEM/ VOICE CARD

DISASSEMBLY

- 1. Place the notebook upside down.
- 2. To remove the comportment cover, remove one screw, then slide the cover outwards and lift up.
- 3. Lift up the inner edge of the card and remove the card.

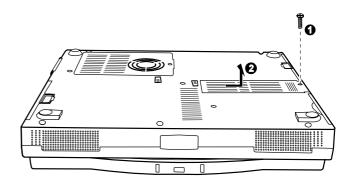


Figure 7-14. Removing the Fax/Modem/Voice Card Compartment Cover

- 1. Hold the Fax/ Modem/ Voice Card at an angle so that the phone line connector is pointed towards the opening on the notebook. Insert the phone line connector into the opening and press the other end to plug the other connector into the socket on the system board.
- 2. Replace the compartment cover and secure with one screw.

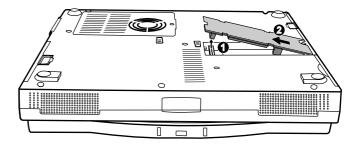
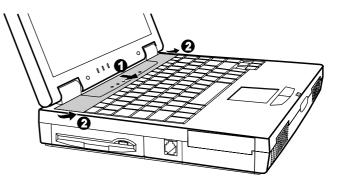
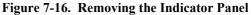


Figure 7-15. Removing the Fax/Modem/Voice Card


7.ASSEMBLY & DISASSEMBLY


7.2.5 KEYBOARD

DISASSEMBLY

- 1. Open the top cover. Remove the Indicators Panel cover by sliding it downwards and lifting the lower edge.
- 2. Lift the keyboard and unplug the keyboard cable.

- 1. Reconnect the keyboard cable and fit the keyboard back into place.
- 2. Replace the Indicator Panel.

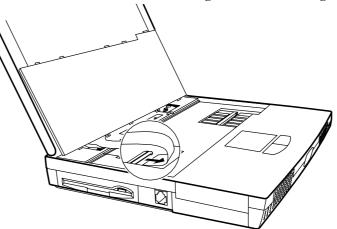


Figure 7-17. Unplugging the Keyboard Cable

7.ASSEMBLY & DISASSEMBLY

7.2.6 MEMORY MODULE

DISASSEMBLY

- 1. Open the keyboard without unplugging the keyboard cable.
- 2. Pull the retaining clips outwards and remove the SO-DIMM.

- 1. To install the SO-DIMM, align the SO-DIMM notched part with the socket corresponding part and firmly insert the SO-DIMM into the socket at an angle. Then push down until the retaining clips lock the SO-DIMM into position.
- 2. Replace the keyboard.

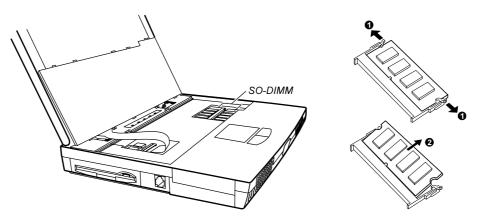


Figure 7-18. Removing the SO-DIMM

7.ASSEMBLY & DISASSEMBLY

7.2.7 LCD ASSEMBLY

DISASSEMBLY

- 1. Open the top cover. Remove the Indicators Panel cover by sliding it downwards and lifting the lower edge.
- 2. Remove the two hinge covers.
- 3. Unplug the LCD cable connector from the system board
- 4. Remove the four screws from the hinges. Now the LCD assembly is free.

- 1. Attach the LCD assembly to the base unit and secure with four screws on the hinges.
- 2. Reconnect the LCD cable connectors to the system board
- 3. Replace the two hinge covers.
- 4. Replace the Indicator Panel cover.

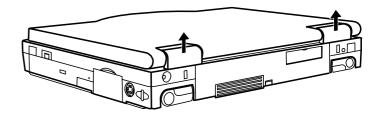


Figure 7-19. Removing the Hinge Covers

Figure 7-20. Unplugging the LCD Connectors and Removing the Hinge Screws

7.ASSEMBLY & DISASSEMBLY

7.2.8 LCD PANEL

DISASSEMBLY

- 1. Open the top cover. Remove the Indicators Panel cover by sliding it downwards and lifting the lower edge.
- 2. Unplug the LCD cable connectors from the system board.
- 3. Remove the four rubber pads and the four screws underneath. Now you can separate the LCD frame from the housing.
- 4. To remove the LCD, remove four screws and unplug the cables.

REASSEMBLY

- 1. Reconnect the cables to the LCD. Fit the LCD back into place and secure with four screws.
- 2. Fit the LCD frame back to the housing and replace the four screws and rubber pads.
- 3. Reconnect the LCD cable connectors to the system board.
- 4. Replace the two hinge covers.
- 5. Replace the Indicators Panel cover.

Figure 7-22. Removing the Flat Panel Screen

Figure 7-21. Removing the LCD Frame

7.ASSEMBLY & DISASSEMBLY

7.2.9 INVERTER BOARD

DISASSEMBLY

- 1. Detach the LCD frame.
- 2. To remove the inverter board, one screw and unplug the connectors from the board.

REASSEMBLY

- 1. Reconnect the connectors. Fit the inverter board place and secure with one screw.
- 2. Fit the LCD frame back to the housing and replace the four screws and rubber pads.

7.2.10 BOTTOM CHASSIS

DISASSEMBLY

- 1. Remove the right and left bay devices.
- 2. Remove the hard disk drive module.
- 3. Remove the Fax/ Modem/ Voice Card.
- 4. Remove nine bottom screws to separate the bottom chassis from the base unit.

- 1. Replace the bottom chassis and secure with nine bottom screw.
- 2. Replace the Fax/ Modem/ Voice Card.
- 3. Replace the hard disk drive module.
- 4. Replace the right and left bay devices.

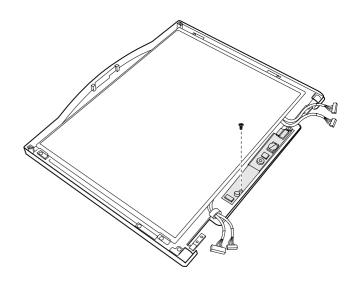


Figure 7-23. Removing the Inverter Board

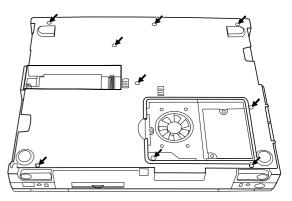


Figure 7-24. Removing the Bottom Chassis

7.ASSEMBLY & DISASSEMBLY

7.2.11 D/D BOARD

DISASSEMBLY

- 1. Remove the bottom chassis.
- 2. Remove the D/D board by removing one screw and lifting it up.

REASSEMBLY

- 1. Reconnect the D/D board connector to the system board and secure with one screw.
- 2. Replace the bottom chassis.

7.2.12 VIDEO CAPTURE BOARD

DISASSEMBLY

- 1. Remove the bottom chassis.
- 2. Remove the Video Capture board by removing one screw and lifting it up.

- 1. Reconnect the Video Capture Board connector to the system board and secure with one screw.
- 2. Replace the bottom chassis.

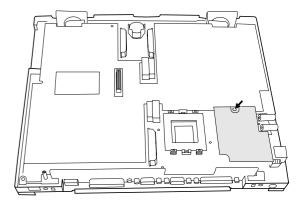


Figure 7-25. Removing the D/D Board

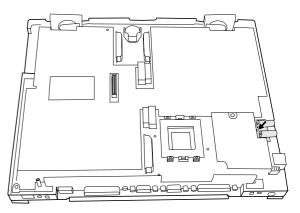


Figure 7-26. Removing the Video Capture Board

7.ASSEMBLY & DISASSEMBLY

7.2.13 SYSTEM BOARD

DISASSEMBLY

- 1. Remove two rear panel screws.
- 2. Remove the LCD assembly.
- 3. Remove the keyboard.
- 4. Unplug the touchpad connector and speaker connectors from the system board.
- 5. Remove the four screws from near the hinges.
- 6. Remove the bottom chassis.
- 7. Remove the D/D board.
- 8. Remove the CPU cooling fan.
- 9. Unplug any connectors that are still connected to the system board.
- 10. Remove the remaining three screws that secure the system board to the base unit.
- 11. Lift the system board free.

REASSEMBLY

- 1. Fit the system board into place and replace the three screws to the system board.
- 2. Replace the CPU cooling fan.
- 3. Replace the D/D board.
- 4. Replaced the bottom chassis.
- 5. Connect the speaker connectors and touchpad connector to the system board.
- 6. Replace the four screws near the hinges.
- 7. Replace the keyboard.
- 8. Replace the two rear panel screws.
- 9. Replace the LCD assembly.

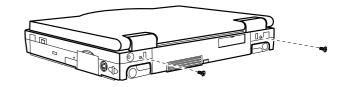


Figure 7-27. Removing Two Rear Panel Screws

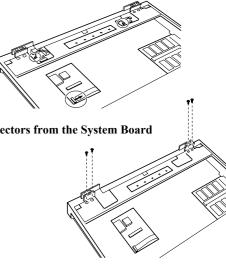


Figure 7-29. Removing Four Screws

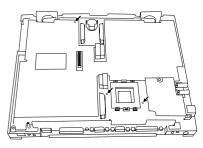


Figure 7-30. Removing the System Board Screws

Figure 7-28. Unpluging the Connectors from the System Board

7.ASSEMBLY & DISASSEMBLY

7.2.14 TOUCHPAD BOARD

DISASSEMBLY

- 1. Remove the system board
- 2. Remove the touchpad holder by removing three screws.
- 3. Slide the touchpad board out.

- 1. Fit the touchpad board back into place.
- 2. Fit the touchpad holder back into place and secure with three screws.
- 3. Replace the system board.

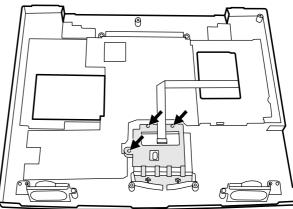


Figure 7-31. Removing the Touchpad Holder

8. MAINTENANCE DIAGNOSTICS

8.1 INTRODUCTION

EACH TIME THE COMPUTER IS TURNED ON ,THE SYSTEM BIOS RUNS A SERIES OF INTERNAL CHECKS ON THE HARDWARE. THIS POWER-ON SELF TEST (POST) ALLOWS THE COMPUTER TO DETECT PROBLEMS AS EARLY AS THE POWER-ON STAGE. ERROR MESSAGES OF POST CAN ALERT YOU TO THE PROBLEMS OF YOUR COMPUTER.

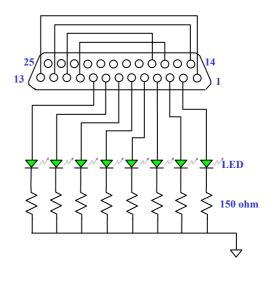
IF AN ERROR IS DETECTED DURING THESE TESTS, YOU WILL SEE AN ERROR MESSAGE DISPLAYED ON THE SCREEN. IF THE ERROR OCCURS BEFORE THE DISPLAY IS INITIALIZED, THEN THE SCREEN CANNOT DISPLAY THE ERROR MESSAGE. ERROR CODES OR SYSTEM BEEPS ARE USED TO IDENTIFY A POST ERROR THAT OCCURS WHEN THE SCREEN IS NOT AVAILABLE.

THE VALUE FOR THE DIAGNOSTIC POST(378H) IS WRITTEN AT THE BEGINNING OF THE TEST. THEREFORE, IF THE TEST FAILED, THE USER CAN DETERMINE WHERE THE PROBLEM OCCURRED BY READING THE LAST VALUE WRITTEN TO POST 378H BY THE PIO DEBUG BOARD PLUG AT PIO PORT.

8. MAINTENANCE DIAGNOSTICS

8.2 ERROR CODES : FOLLOWING IS A LIST OF ERROR CODES IN SEQUENCE DISPLAY ON THE PIO DEBUG BOARD.

Code	Description			
00H	Start of BootLoader sequence.			
01H	Disable A20 through A20, not send.			
02H	Initialize ChipSet.			
03H	Perform conventional RAM(1st 640K) test with crossed-pattern R/W.			
04H	Move BootLoader to the RAM.			
05H	Start point of execution of BootLoader in RAM.			
06H	Perform PnP initialization for Crystal audio chip.			
06H	Check OVERRIDE option, not send.			
07H	Shadow System BIOS.			
08H	Checksum System BIOS ROM, not send.			
09H	Proceed with Normal Boot			
0AH	Proceed with Crisis Boot			
0FH	DRAM Sizing			
10H	Initial L1,L2 cache, make stack and diagnose CMOS.			
11H	Turn off FASTA20 for POST. Reset GDTs, 8259s guickly.			
12H	Signal Power On Reset at COMS.			
13H	Initialize the Chipset, (SDRAM).			
14H	Search For ISA Bus VGA Adapter			
15H	Reset Counter/Timer 1, exite the RAM.			
16H	User register config through CMOS			
18H	Dispatch to 1st 64K RAM Test			
19H	Checksum the ROM			
1AH	Reset PIC's(8259s)			
1BH	Initialize Video Adapter(s)			
1CH	Initialize Video (6845 Regs)			
1DH	Initialize Color Adapter			
1EH	Initialize Monochrome Adapter			
1FH	Test 8237A Page Registers			
20H	Perform Keyboard self test			
21H	Test & Initialize Keyboard Controller			


Code	Description			
22H	Check If CMOS Ram Valid			
23H	Test Battery Fail & CMOS X-SUM			
24H	Test the DMA controllers			
25H	Initialize 8237A Controller			
26H	Initialize Interrupt Vectors Table.			
27H	RAM Quick Sizing			
28H	Protected mode entered safely			
29H	RAM test completed			
2AH	Protected mode exit successful			
2BH	Setup Shadow			
2CH	Prepare To Initialize Video			
2DH	Search For Monochrome Adapter			
2EH	Search For Color Adapter, VGA Initialize.			
2FH	Signon messages displayed			
30H	Special init of keyboard ctlr			
31H	Test If Keyboard Present			
32H	Test Keyboard Interrupt			
33H	Test Keyboard Command Byte			
34H	TEST, Blank and count all RAM			
35H	Protected mode entered safely (2).			
36H	RAM test complete			
37H	Protected mode exit successful			
38H	Update Keyboard output port to disable gate of A20			
39H	Setup Cache Controller			
3AH	Test If 18.2Hz Periodic Working			
3BH	Initialize BIOS Data Area at 40:0.			
3CH	Initialize the hardware interrupt vector table			
3DH	Search and Init the Mouse			
3EH	Update NumLock status			
3FH	OEM initialization of COMM and LPT ports			

8. MAINTENANCE DIAGNOSTICS

Code	Description			
40H	Configure the COMM and LPT ports			
41H	Initialize the floppies			
42H	Initialize the hard disk			
43H	Initialize additional ROMs			
44H	OEM's init of Power Management, (check SMI)			
45H	Update NUMLOCK status			
46H	Test For Coprocessor Installed			
47H	OEM functions before boot (PCMCIA, CardBus)			
48H	Dispatch To Operation System Boot			
49H	Jump Into Bootstrap Code			
4AH	OEM's init of PM with USB			

Code	Beeps	Description		
0F0h		No RAM		
0F1h		RAM test failed		
002h	··_·	BIOS is not shadowed		
004h		BIOS Checksum BAD		
00Ah		No CR code/CR bad		

PIO PORT (378H) DIAGNOSTIC TOOLS

PIN1 : STROBE	←	≻	PIN13: SLCT
PIN10: ACK#	< →	≻	PIN16: INT#
PIN11: BUSY	←	>	PIN17: SELIN#
PIN12:PTERR	←	≻	PIN14: AUTOFD#
PIN[9:2]:PD[7:0]			

9. TROUBLE SHOOTING

9.1 NO POWER

9.2 NO DISPLAY

9.3 VGA CONTROLLER FAILURE

9.4 LCD NO DISPLAY

9.5 EXTERNAL MONITOR NO DISPLAY

9.6 MEMORY TEST ERROR

9.7 KEYBOARD TEST ERROR

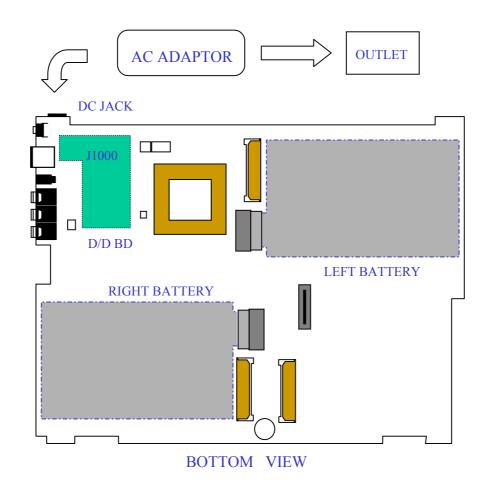
9.8 TRACK PAD/BALL TEST ERROR

9.9 DISKETTE DRIVE TEST ERROR

9.10 CD-ROM DRIVE TEST ERROR

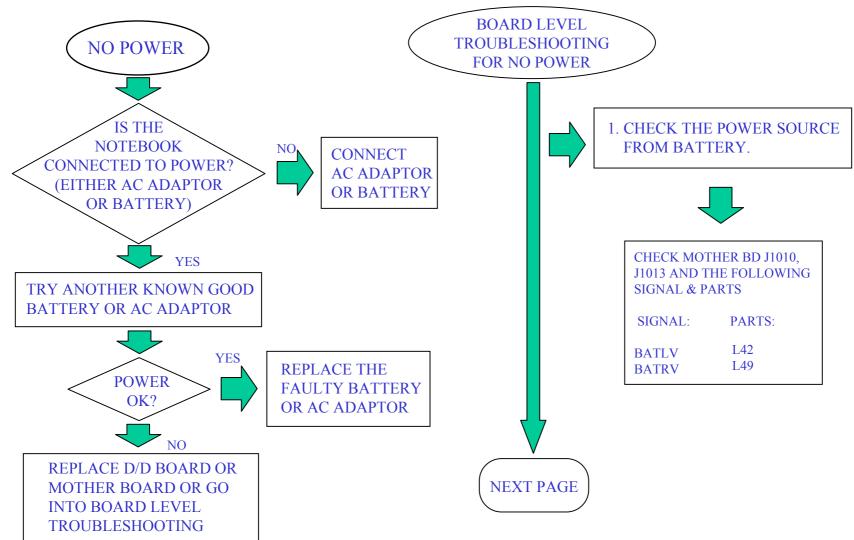
9.11 HARD DRIVE TEST ERROR

9.12 USB PORT TEST ERROR

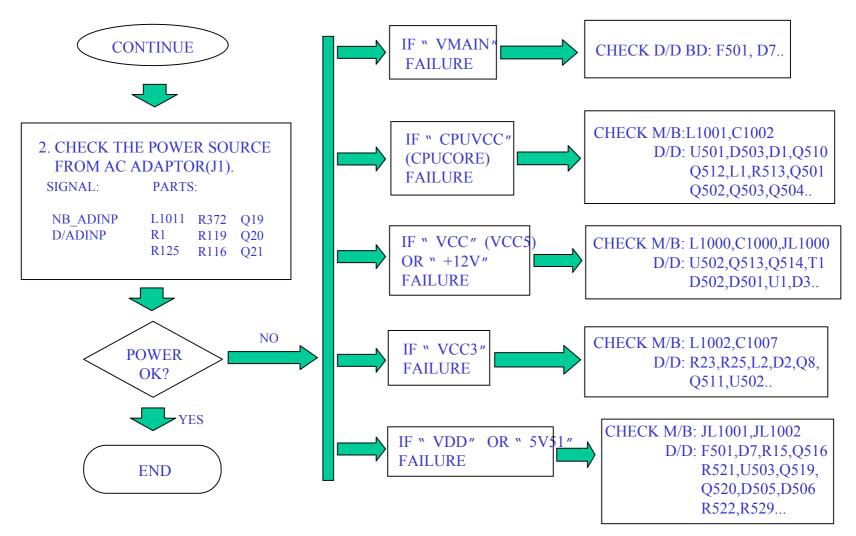

9.13 SIO PORT TEST ERROR

9.14 PIO PORT TEST ERROR

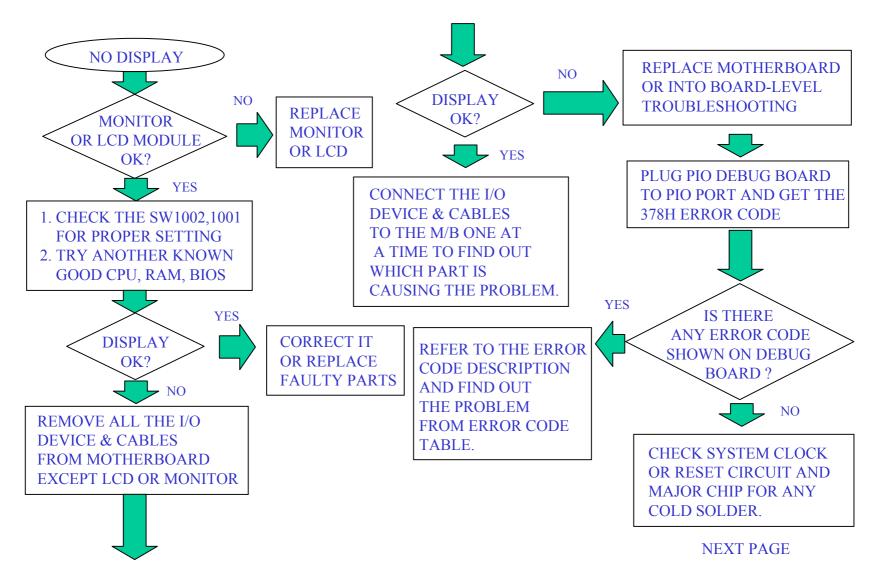
9.15 AUDIO FAILURE


9.1 NO POWER:

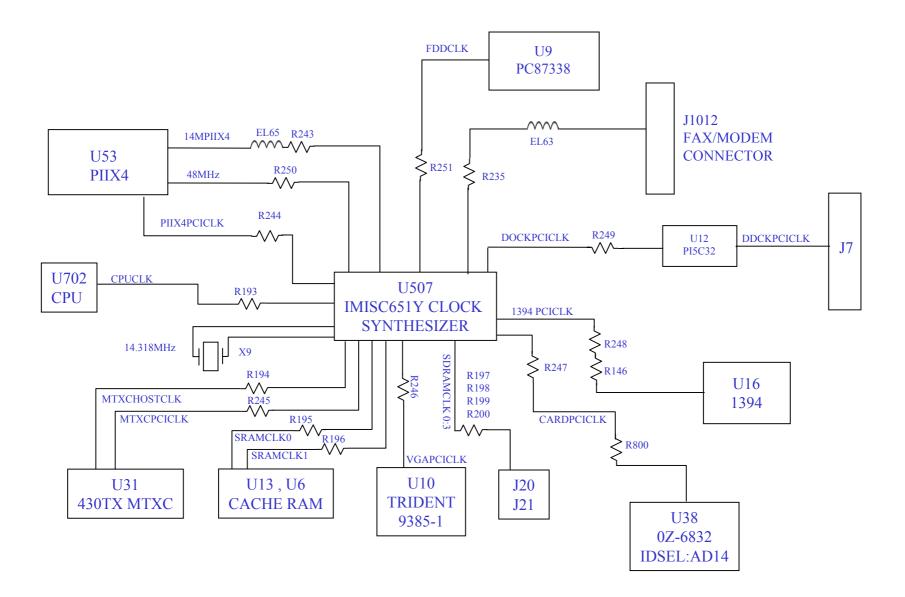
WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS , POWER INDICATOR IS NOT LIGHT UP.


9.1 NO POWER:

WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS ,POWER INDICATOR IS NOT LIGHT UP.

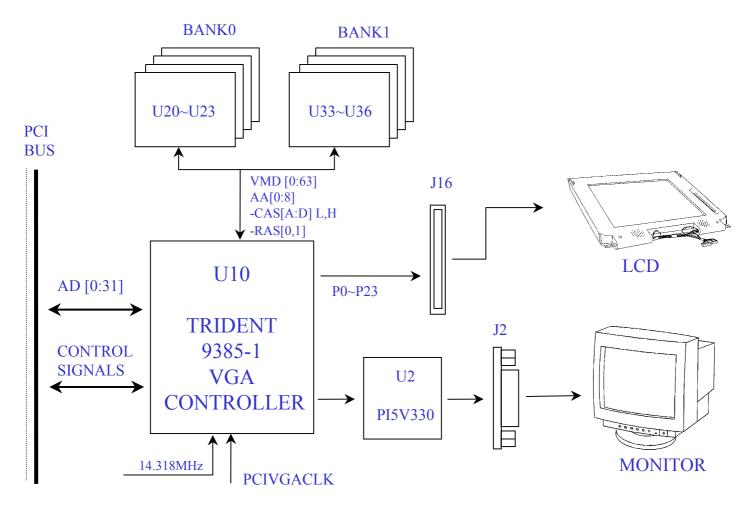

9.1 NO POWER:

WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS , POWER INDICATOR IS NOT LIGHT UP.

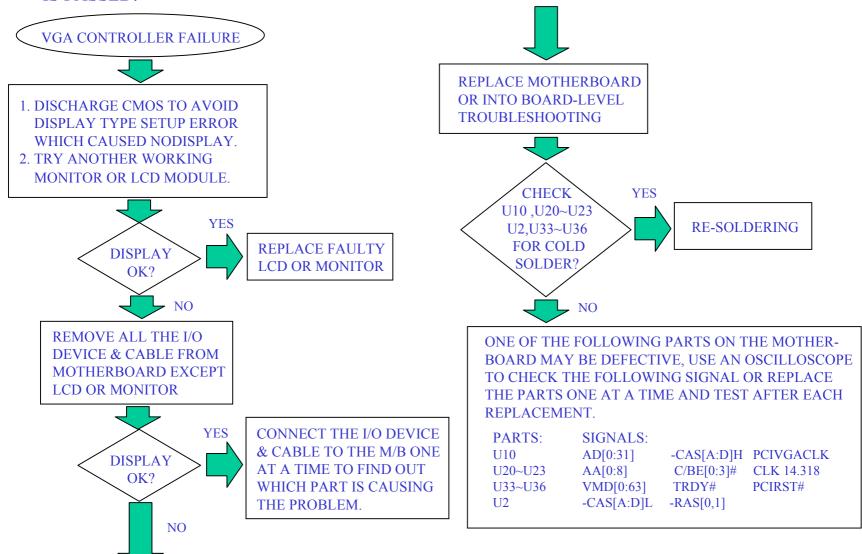


9.2 NO DISPLAY

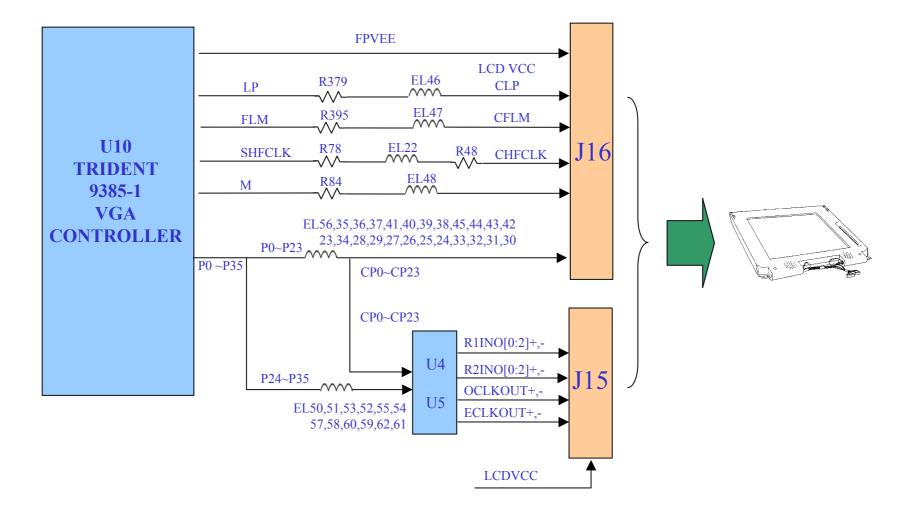
THERE IS NO DISPLAY ON BOTH LCD AND MONITOR



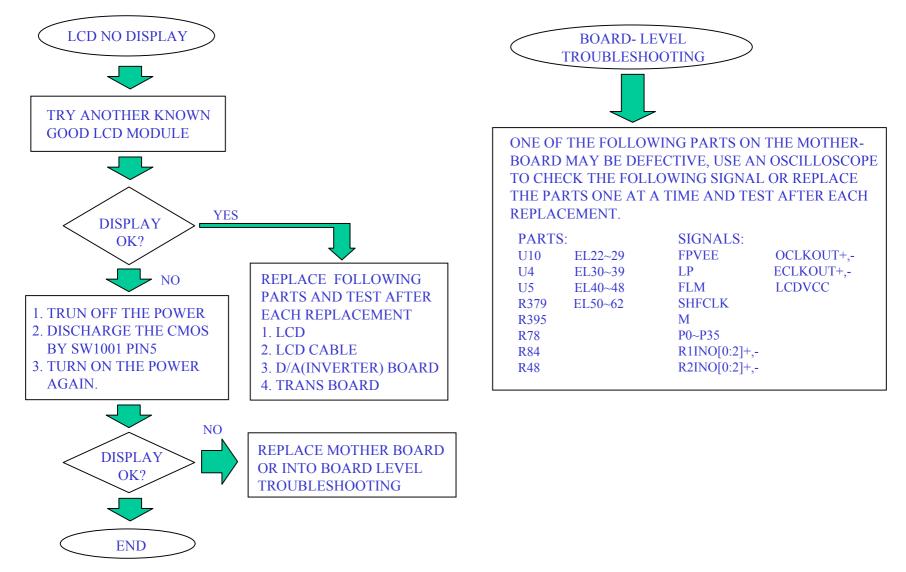
9.2 NO DISPLAY *****SYSTEM CLOCK CHECK *****


9.3 VGA CONTROLLERFAILURE

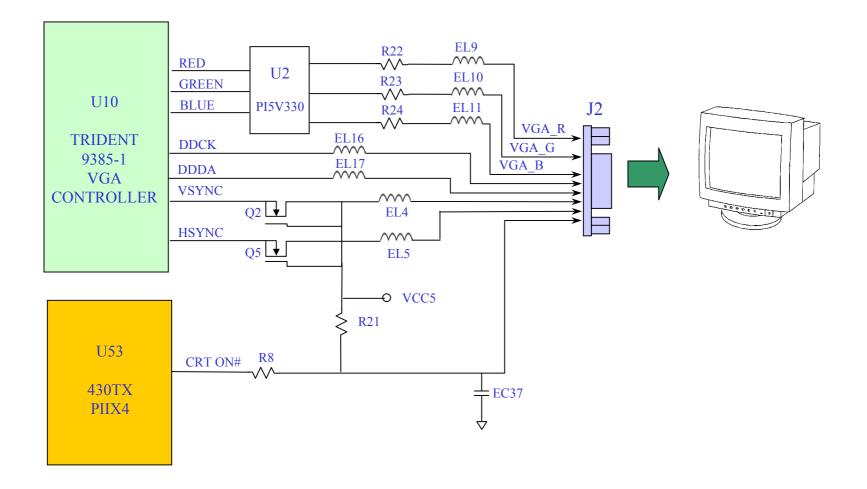
THERE IS NO DISPLAY ON BOTH LCD AND MONITOR ALYHOUGH POWER-ON-SELF-TEST IS PASSED.


9.3 VGA CONTROLLERFAILURE

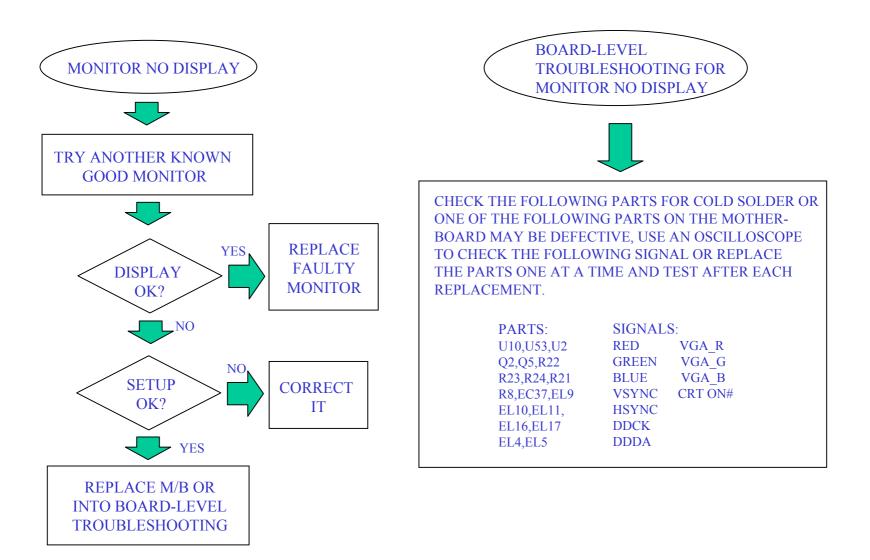
THERE IS NO DISPLAY ON BOTH LCD AND MONITOR ALTHOUGH POWER-ON-SELF-TEST IS PASSED.


9.4 LCD NO DISPLAY

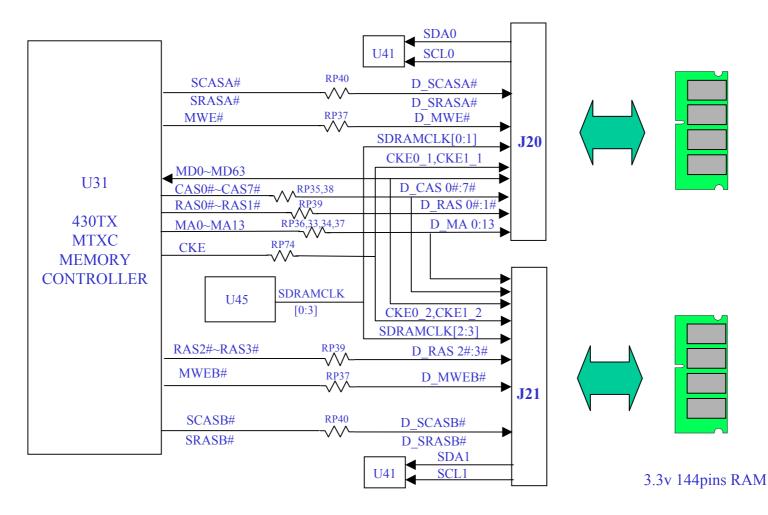
THE LCD SHOWS NOTHING OR ABNORMAL PICTURE , BUT IT IS OK FOR EXTERNAL MONITOR.


9.4 LCD NO DISPLAY

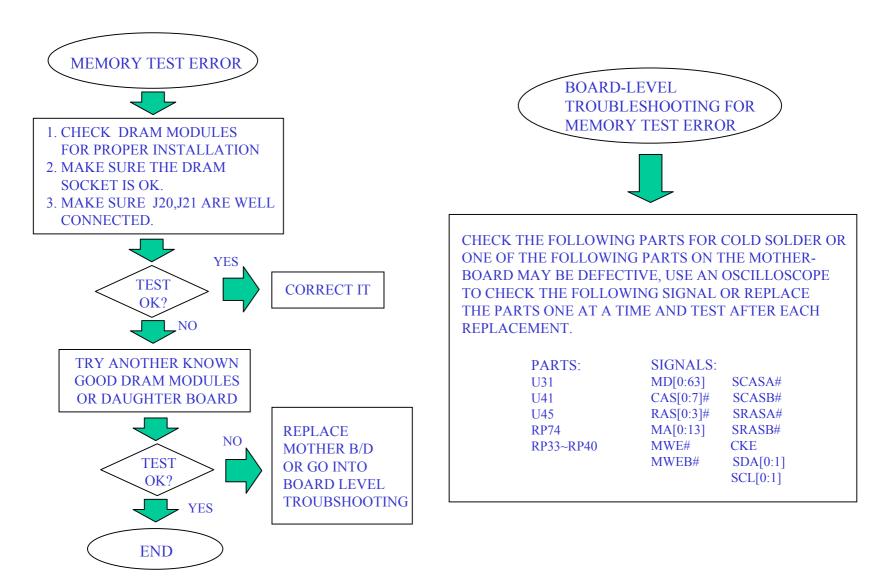
THE LCD SHOWS NOTHING OR ABNORMAL PICTURE , BUT IT IS OK FOR EXTERNAL MONITOR.


9.5 EXTERNAL MONITOR NO DISPLAY

THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT IT IS OK FOR LCD.

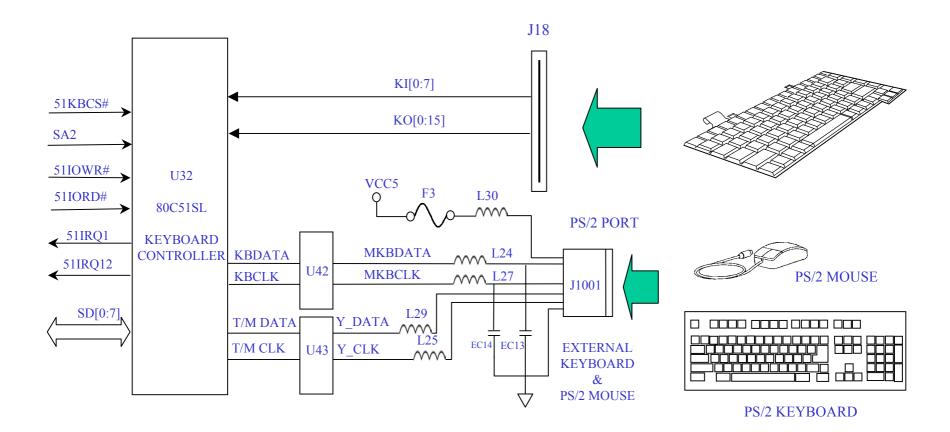

9.5 EXTERNAL MONITOR NO DISPLAY

THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT IT IS OK FOR LCD.

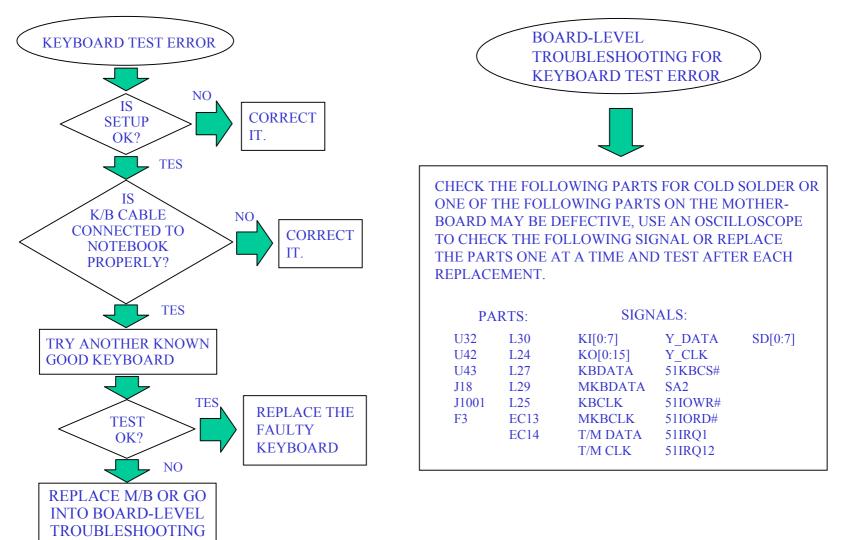


9.6 MEMORY TEST ERROR

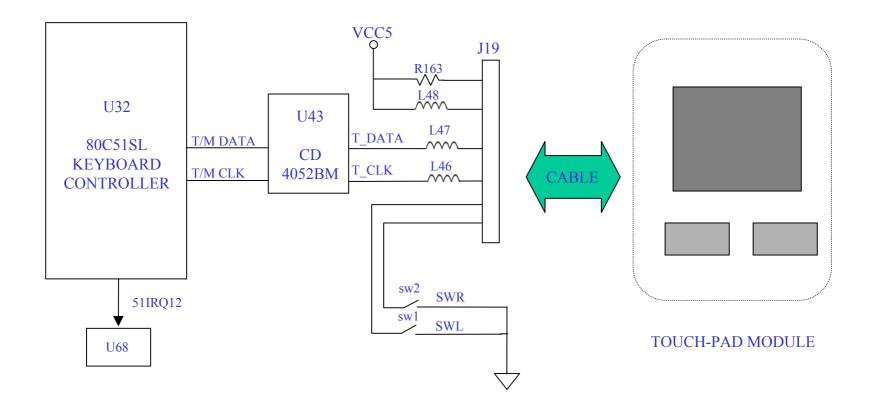
THE ERROR CODE SHOWN ON THE PIO DEBUG BOARD IS 0FH, 13H,18H OR 27H AND SYSTEM HANGS UP.


9.6 MEMORY TEST ERROR

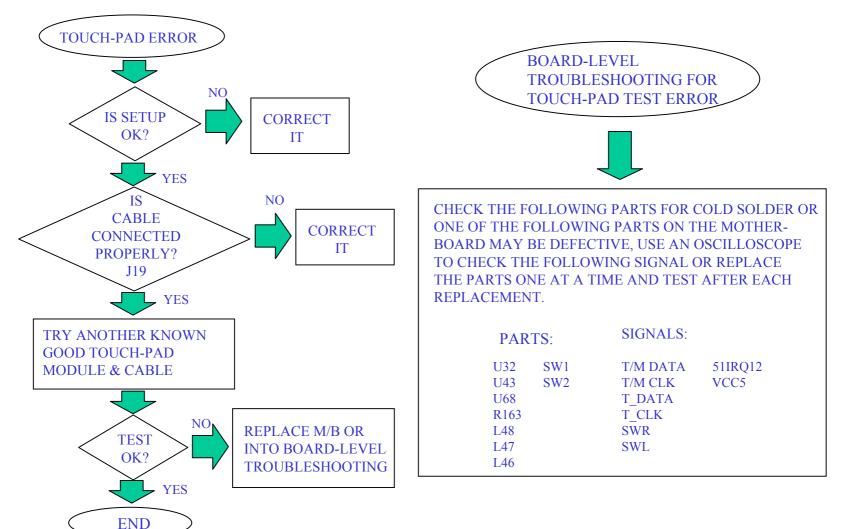
9.7 KEYBOARD TEST ERROR


1. ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN' T WORK.

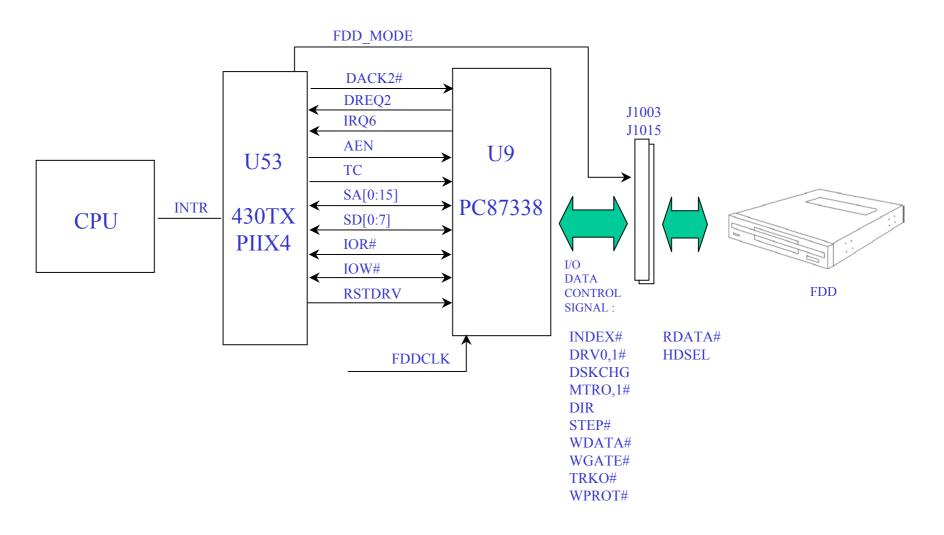
2. PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 30H,31H,32H OR 33H


9.7 KEYBOARD TEST ERROR

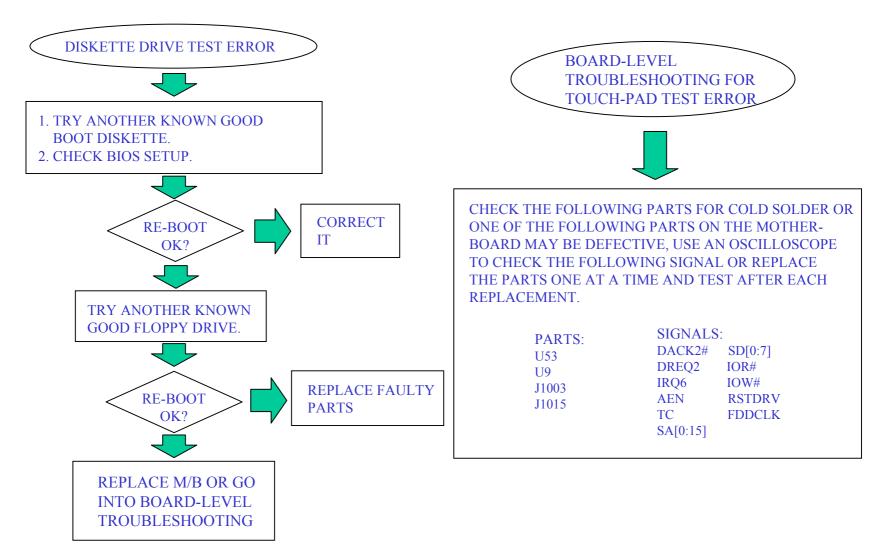
ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN' T WORK.
 PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 30H,31H,32H,33H


9.8 TRACK PAD TEST ERROR

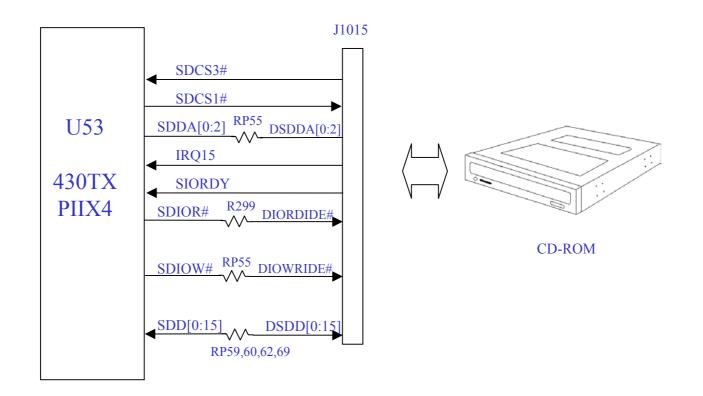
AN ERROR MESSAGE IS SHOWN WHEN TOUCH-PAD IS ENABLED.


9.8 TRACK PAD TEST ERROR

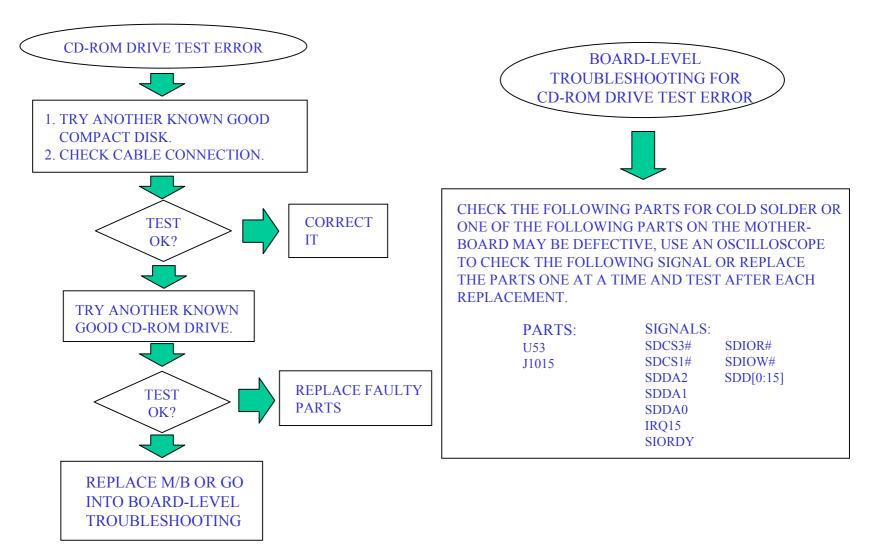
AN ERROR MESSAGE IS SHOWN WHEN TOUCH-PAD IS ENABLED.


9.9 DISKETTE DRIVE TEST ERROR

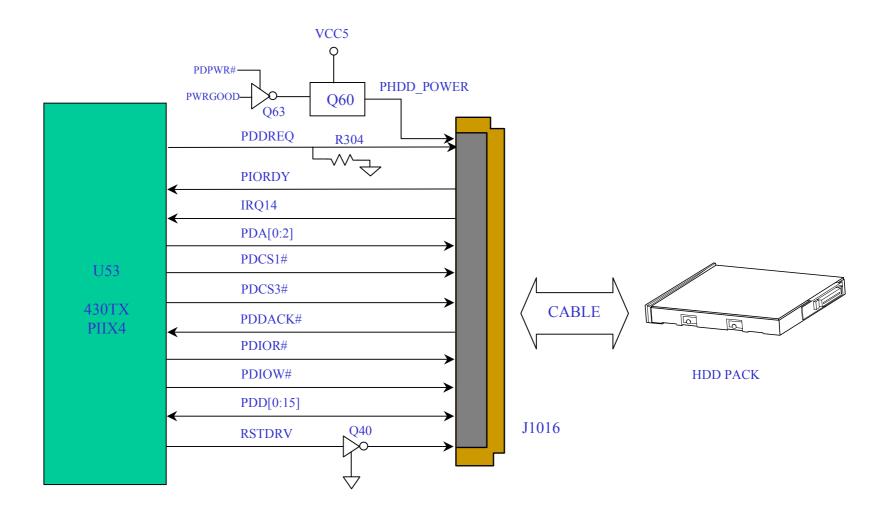
AN ERROR MESSAGE IS SHOWN WHEN READING/ WRITING DATA FROM/TO DISKETTE DRIVE.


9.9 DISKETTE DRIVE TEST ERROR

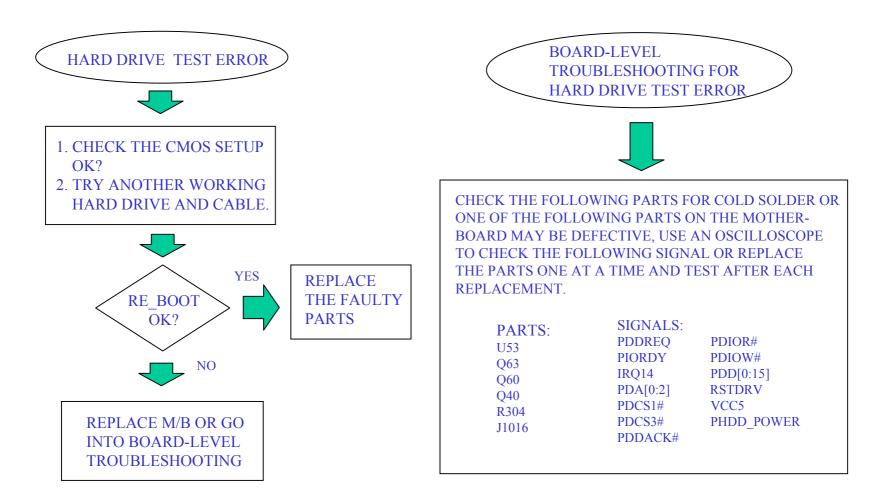
AN ERROR MESSAGE IS SHOWN WHEN READING/ WRITING DATA FROM/TO DISKETTE DRIVE.


9.10 CD-ROM DRIVE TEST ERROR

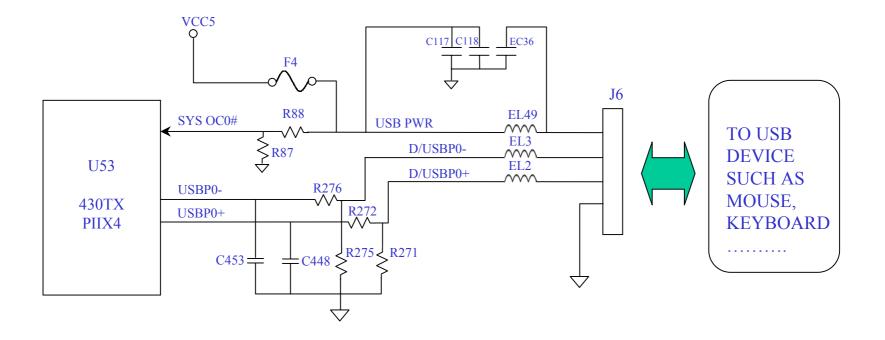
AN ERROR MESSAGE IS SHOWN WHEN READING DATA FROM CD-ROM DRIVE.


9.10 CD-ROM DRIVE TEST ERROR

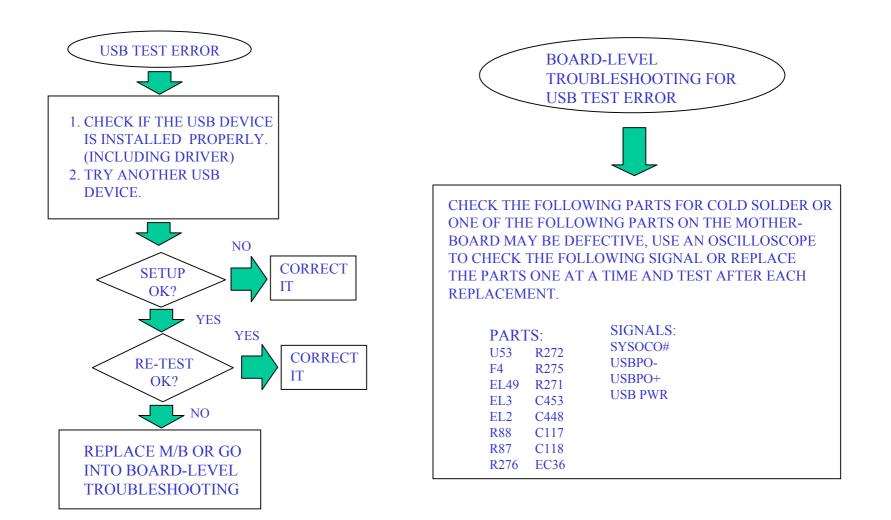
AN ERROR MESSAGE IS SHOWN WHEN READING GATA FROM CD-ROM DRIVE.


9.11 HARD DRIVE TEST ERROR

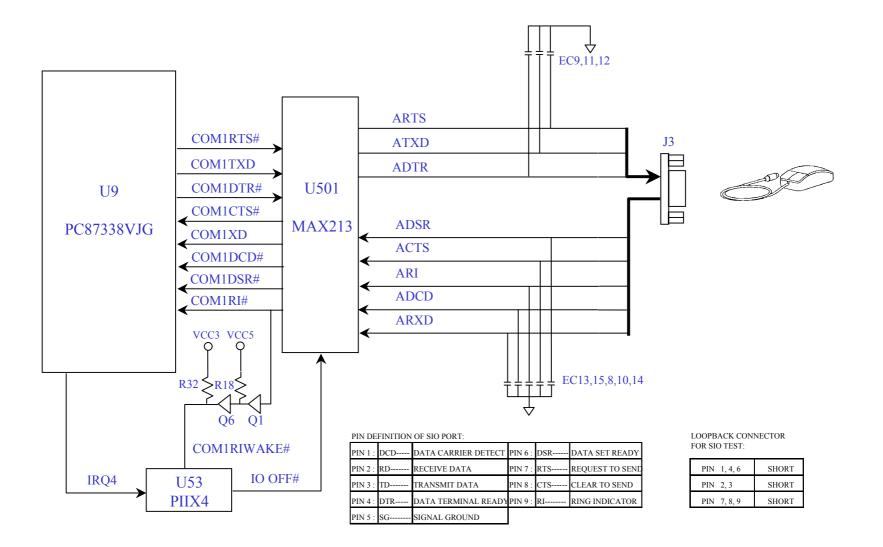
EITHER AN ERROR MESSAGE IS SHOWN , OR THE DRIVER MOTOR SPINS NON-STOP , WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.


9.11 HARD DRIVE TEST ERROR

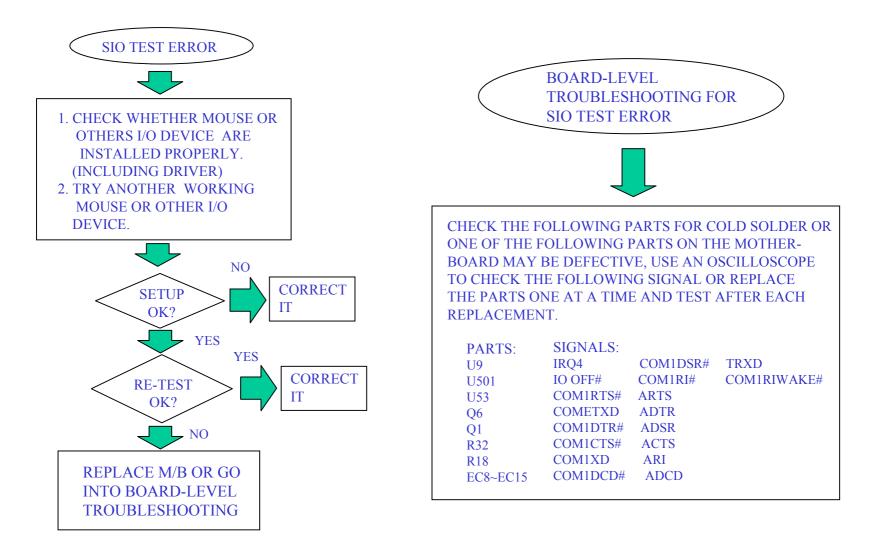
EITHER AN ERROR MESSAGE IS SHOWN , OR THE DRIVER MOTOR SPINS NON-STOP , WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.


9.12 USB PORT TEST ERROR

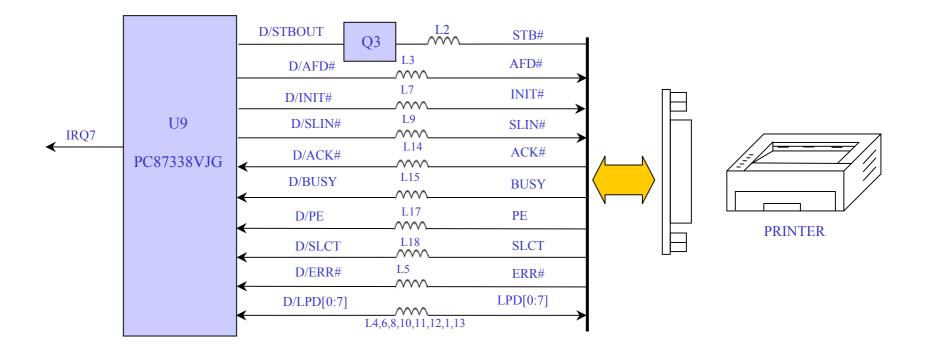
AN ERROR OCCURS WHEN A USB I/O DEVICE IS INSTALLED.


9.12 USB PORT TEST ERROR

AN ERROR OCCURS WHEN A USB I/O DEVICE IS INSTALLED.


9.13 SIO PORT TEST ERROR

AN ERROR OCCURS WHEN A MOUSE OR OTHER I/O DEVICE IS INSTALLED.


9.13 SIO PORT TEST ERROR

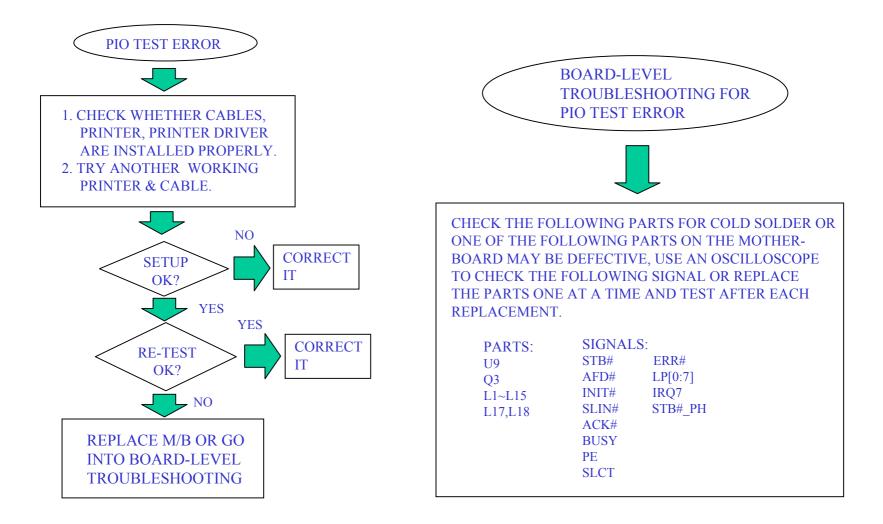
AN ERROR OCCURS WHEN A MOUSE OR OTHER I/O DEVICE IS INSTALLED.

9.14 PIO PORT TEST ERROR

WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.

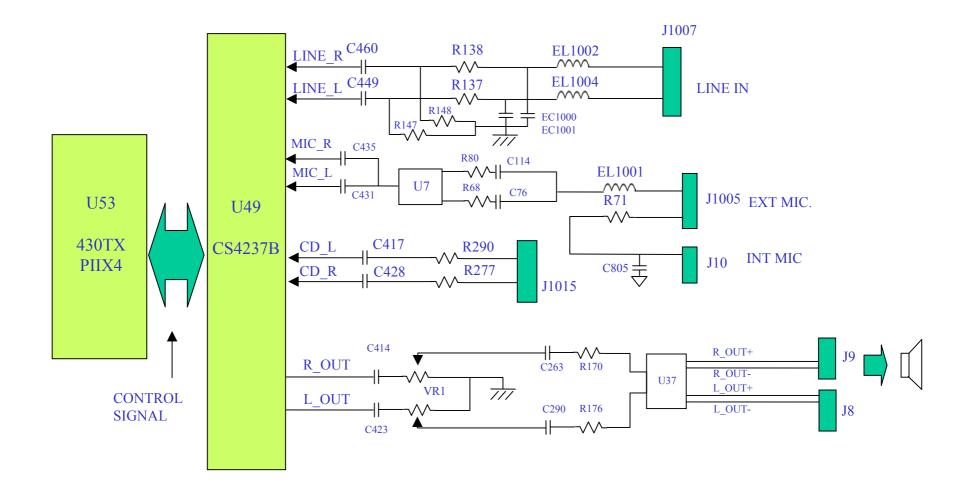
PIN DEFINITIO	N OF PID PORT
---------------	---------------

PIN 1	STB	STROBE SIGNAL	PIN 14	AFD	AUTO LINE FEED
PIN 2-9	D0-D7	PARALLEL PORT DATA BUS D0 TO D7	PIN 15	ERR	ERROR AT PRINTER
PIN 10	ACK	ACKNOW LEDGE HANDSHANK	PIN 16	IN IT	IN IT IA TE OUTPUT
PIN 11	BUSY	BUSY SIGNAL	PIN 17	SLIN	PRINTER SELECT
PIN 12	PE	PAPER END	PIN 18-25: SIGNAL GROUND		GNAL GROUND
PIN 13	SLCT	PRINTER SELECTED			

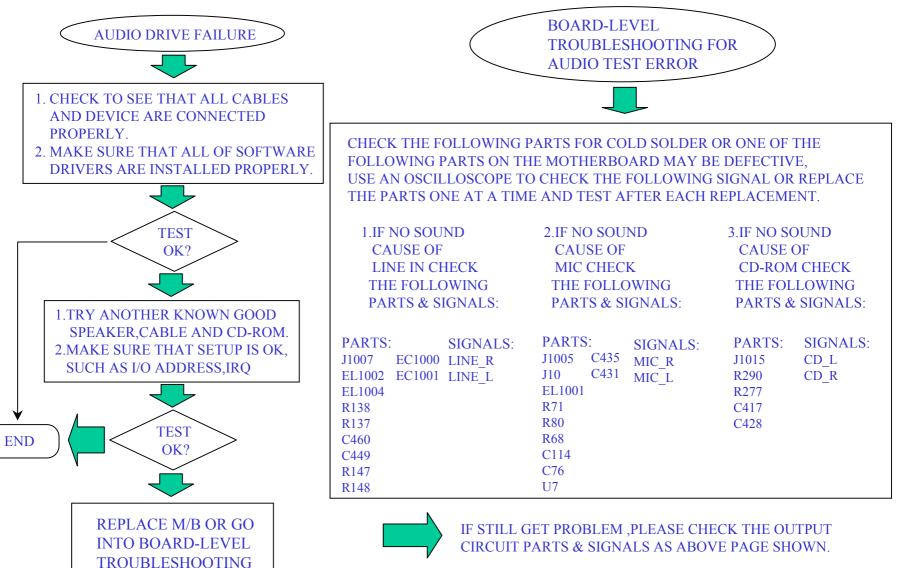

LOOPBACK CONNECTOR FOR PID TEST:

LOOIDIIO		010101010	1 10 1 101			
PIN 1,13	SHORT	PIN 10,16	SHORT			
PIN 2,15	SHORT	PIN 11,17	SHORT			
PIN 12,14 SHORT						
LOOPBACK CONNECTOR FOR EPP TEST:						

LOOPBACK CONNECTOR FOR EPP IESI					
PIN 1,2,4,6,8	SHORT				
PIN 3,5,7,9,16	SHORT				
PIN 18,19,20,21,22,23,24,25	SHORT				


9.14 PIO PORT TEST ERROR

WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.


9.15 AUDIO FAILURE

NO SOUND FROM SPEAKER AFTER AUDIO DRIVER IS INSTALLED.

9.15 AUDIO FAILURE

NO SOUND FROM SPEAKER AFTER AUDIO DRIVER IS INSTALLED.

10. SPARE PARTS LIST-1 **** PC;5031N/TD-001-SC/EN-1 N/1 Spare Parts List ****

	1			1	
PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
526266510002	PC;5031N/TD-001-SC/EN-1 N/1		344665100027	COVER;REAR COVER,5031	
340665100007	COVER ASSY A;LED,5031		431665100001	TOP CABINET ASSY;5031	
344665100022	LENS;LED LENS,5031		340665100021	COVER ASSY;TOP CASE,#1,5031	
344665100026	COVER;LED COVER,5031		342665200031	FINGER;H/S,COVER,PITCHING3	
345665100007	PAD;MICROPHONE PAD,5031		343665100001	SUPPORT;K/B SUPPORT,5031	
431665100021	CASE KIT;5031		344665100001	COVER;TOP CASE,5031	
340665100020	HOUSING ASSY;BOTTOM CASE,5031		344665100017	LENS;IR LENS,5031	
341664700006	SPRING PLATE;FOOT,BTM CASE,5026		345665100010	CONDTIVE SPONGE;I/O SLOT,5031	
341664700007	SPRING;SLIDE,BTM CASE,5026		345665100011	CONDTIVE SPONGE;KEYBOARD,5031	
	SPRING;CHANGE,BTM CASE,5026			CONDTIVE SPONG;AUDIO,PITCHING3	
341664700021	SPRING-WASHER;BTM CASE,5026		345665200019	CONDTIVE SPONG;HINGE,PITCHING3	
	SPRING PLATE;BASE,BTM,5026		371102610303	SCREW;M2.6L3,K-HEAD(+),NIW	TOP CASE TO K/B
	SPRING;LCD HOOK SPRING,5031			HEATSINK;VGA,M/B,5031	
	SCREW;M3,FOOT,BTM CASE,5026			HOLDER;T/P HOLDER,5031	
	BRKT;FAN SUPPORT,5031		370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727	T/P HOLDER TO TOP
344664700047	FOOT;R,BTM CASE,5026		421664700071	FFC ASSY;TOUCH PAD,UPPER CASE,50	
	FOOT;L,BTM CASE,5026			MICROPHONE ASSY;5031	
	DOOR;CHANGE,B-CASE,1,5026			WIRE ASSY;COVER SWITCH,5027	
	HOOK;SLIDE,HOUSING,PITCHING			SPEAKER ASSY;LEFT,5031	
	HOUSING;BOTTOM CASE,5031			SPEAKER ASSY;LEFT,5031	
	BUTTON;MODULE LOCK BUTTON,5031			BRKT;SPEAKER BRACKET(L),5031	
	BUTTON;POWER BUTTON,5031			SPC-SCREW;M2.6 L6,NIB,K-HD,727	SPK/BKT
	BUTTUN;LCD HOOK BUTTUN,5031			SPEAKER ASSY;RIGHT,5031	
	CONDTIVE SPONGE;I/O SLOT(L),5031			SPEAKER ASSY;RIGHT,5031	
	CONDTIVE SPONGE;I/O SLOT(R),5031			BRKT;SPEAKER BRACKET(R),5031	
	CONDTIVE SPONGE;I/O BRKT,5031		370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727	SPK/BKT
	FOOT;PAD,PITCHING3			TOUCH PAD MODULE;904236-0000,502	
	CONDTIVE SPONGE;VEDIO,5031			PAD;SPK WIRE PAD,5031	
	INSULATOR;FAN BRKT,5031		421664900062	CABLE ASSY;ESD TOUCH PAD,5027	
345665100016	PAD;FOOT PAD(REAR),5031		345665100015	PAD;T/P BUTTON SUPPORT PAD,5031	
340665100013	COVER ASSY;REAR,5031		442664700002	AC ADPT ASSY;5026 RFC	
344665100023	COVER;DOCKING COVER,5031		451665100001	ME KIT;SYSTEM,5031	83

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
_	HEATSINK;W/FAN,5031			SPC-SCREW;M2.6L4,NIB,727,NLK	LED/B TO /MBx1
	COVER;HINGE COVER(L),5031			NUT-HEX;M2.6,NIW	
	COVER;HINGE COVER(R),5031		377102610001	STANDOFF;M2,6DP3.5H5L5,NYLOK	
	COVER ASSY;CPU,5031		377244010002	STANDOFF;#4-40DP3.5H5L5.5,NIW	
	COVER;CPU COVER,5031		377102610004	STANDOFF;M2.6DP12.4H14.9L5,NYLOK	
346665100007	MESH;FAN MESH,5031		411665100001	PWA;PWA-5031 MOTHER BD	
344665100019	COVER;MODEM COVER,5031		242600000001	LABEL;PAL,20*5MM,COMMON	
344665100024	COVER;AUDIO COVER,5031		242600000145	LABEL;10*10,BLANK,COMMON	
346665200004	THERMAL PAD;UP,CPU,PITCHING3		242600000170	LABEL;PCMCIA CARD WORKS/95 EN	
370102610401	SPC-SCREW;M2.6L4,NIB,727,NLK	COVER TO I/Ox2	242600000195	LABEL;PENTIUM-BP,SYSTEMSOFT BIOS	
370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727		338530010009	BATTERY;LI,3V/195mAH,BR2032	
371102031500	SCREW;M2L15,PAN(+),NIW		344600000215	IC CARD CON PART;160P,55150-1605	
370102610801	SPC-SCREW;M2.6L8,NIB,K-HD,NYLOCK		370102010502	SPC-SCREW;M2 L5,NIB,K-HD,727	
342665200029	COVER;DRAM,PITCHING3		371102011201	SCREW;M2 L12,FLT(+),NIW	
344665100032	COVER;MODEM CON. COVER,5031		371102510402	SCREW;M2.5L4,FLT(+),NIW	
346665100005	WASHER; MODEM COVER WASHER, 503		411665100002	PWA;PWA-5031 M/B T/U BD	
342665100007	BRKT;LCD CABLE(R),5031		313000510003	FILTER;4LINE,360OHM/100MHZ,8P	L1011
342665100008	BRKT;LCD CABLE(L),5031		331040010002	CON;HDR,MA,10P,2MM,R/A,SUYIN	J1010,1013
371102612201	SCREW;M2.6L22,K HEAD		331030003004	CON;HDR,MA,3P*1,2.54MM,ST	J14
222600020023	PE BAG;120*170MM,W/SEAL,COMMON		331190002001	JUMPER;2P*1,2MM,MINI,GOLD FLUSH	
222600020049	PE BAG;50*70MM,W/SEAL,COMMON		331210020401	CON;EDGE,204P,1.0MM,R/A,AMP	J7
451665100002	ME KIT;MAIN BD,5031		331650029606	IC SOCKET;296P,ZIF,ZIFPGAFC	U702
340665200008	PAD ASSY;MB,PITCHING3		331720009004	CON;D,MA,9P,2.775,R/A	J3
341664700013	SHIELDING;PS/2,M/B,5026		331720015006	CON;D,FM,15P,2.29,R/A,3ROW	J2
341665100003	BRKT;PORT BRACKET,5031		331720025005	CON;D,FM,25P,2.775,R/A	J4
342664800009	STANDOFF;DOCKING,PITCHING		331840005002	CON;STEREO JACK,5P,R/A,D3.6,2 SW	J1005,1007,1009
346665100002	INSULATOR;PCMCIA,5031		331872706019	CON;DIN,SKT,6P,MINI,R/A,PCB MT	J1001
346665200002	INSULATOR;D/D,PITCHING3		331910003003	CON;POWER JACK,3P,16VDC/3A	J1
346665200003	INSULATOR;M/B,UP,PITCHING3		331910003006	CON;POWER JACK,3P,6.3VDC/2A	J1004
346665200010	INSULATOR;LED M/B,PITCHING3		337120124001	SW;DIP,SPST,2P,25VDC,24MA,HDK632	SW1000
343665100004	PLATE;D/D T-WIN,5031		33800000008	BATTERY HOLDER;BH32T,5031	BT1000
346665200013	INSULATOR;DOCKING,PITCHING3		411665100005	PWA;PWA-5031 V1 SMT MOTHER BD	84

		1			
PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
71002000301	RES;0 ,1/10W,5% ,0805,SMT	R150,115,	271071470301	RES;47 ,1/16W,5% ,0603,SMT	R244,245
71012000301	RES;0 ,1/8W,5% ,1206,SMT	R118,1016,1019,	271071471302	RES;470 ,1/16W,5% ,0603,SMT	R307
271012202301	RES;2K ,1/8W,5% ,1206,SMT	R340	271071472302	RES;4.7K ,1/16W,5% ,0603,SMT	R8,51,107,259,328
271012561301	RES;560 ,1/8W,5% ,1206,SMT	R334	271071473301	RES;47K ,1/16W,5% ,0603,SMT	R91-93,372,325
271013100301	RES;10 ,1/4W,5% ,1206,SMT	R309,310,353	271071474301	RES;470K ,1/16W,5% ,0603,SMT	R371,1058
271071100302	RES;10 ,1/16W,5% ,0603,SMT	R28,175,235,194	271071499111	RES;4.99K,1/16W,1%,0603,SMT	R189,204
271071000002	RES;0 ,1/16W,0603,SMT	R25,71,82,123,130	271071562301	RES;5.6K ,1/16W,5% ,0603,SMT	R167,219,147,148
271071101301	RES;100 ,1/16W,5% ,0603,SMT	R27,159,206	271071563302	RES;56K ,1/16W,5% ,0603,SMT	R278,294
271071102302	RES;1K ,1/16W,5% ,0603,SMT	R14,36,103,129,273	271071564301	RES;560K ,1/16W,5% ,0603,SMT	R87,300
271071103302	RES;10K ,1/16W,5% ,0603,SMT	R1,79,94,96,110	271071680301	RES;68 ,1/16W,5% ,0603,SMT	R104-106
271071102311	RES;102K ,1/16W,1% ,0603,SMT	R16	271071682101	RES;6.8K ,1/16W,1% ,0603,SMT	R252,256,
271071104101	RES;100K ,1/16W,1% ,0603,SMT	R345,108,157,207,17	271071683301	RES;68K ,1/16W,5% ,0603,SMT	R288
271071104302	RES;100K ,1/16W,5% ,0603,SMT	R7,13,42,31	271071750101	RES;75 ,1/16W,1% ,0603,SMT	R3-5,266,1011
271071105101	RES;1M ,1/16W,1% ,0603,SMT	R49,162,220	271611000301	RP;0*4 ,8P ,1/16W,5% ,0612,SMT	RP54
271071111101	RES;110 ,1/16W,1% ,0603,SMT	R60	271611100301	RP;10*4 ,8P ,1/16W,5% ,0612,SMT	RP33,34,36,37,39,4
271071153301	RES;15K ,1/16W,5% ,0603,SMT	R264,267,271,275,	271611102301	RP;1K*4 ,8P ,1/16W,5% ,0612,SMT	RP73
271071202301	RES;2K ,1/16W,5% ,0603,SMT	R261	271611103301	RP;10K*4 ,8P ,1/16W,5% ,0612,SMT	RP5,43,46,50,57,63
271071203101	RES;20K ,1/16W,1% ,0603,SMT	R95,100,101,131,224,	271611104301	RP;100K*4,8P ,1/16W,5% ,0612,SMT	RP31,42,44
271071221301	RES;220 ,1/16W,5% ,0603,SMT	R119	271611203301	RP;20K*4 ,8P ,1/16W,5% ,0612,SMT	RP702,703
271071221302	RES;22 ,1/16W,5% ,0603,SMT	R120,186,202,243	271611220301	RP;22*4 ,8P ,1/16W,5% ,0612,SMT	RP28,30
271071222302	RES;2.2K ,1/16W,5% ,0603,SMT	R29,30,1003	271611222301	RP;2.2K*4,8P ,1/16W,5% ,0612,SMT	RP12
271071223302	RES;22K ,1/16W,5% ,0603,SMT	R68,109,85,1002	271611330301	RP;33*4 ,8P ,1/16W,5% ,0612,SMT	RP2-4,6-8,14-16,2
271071224301	RES;220K ,1/16W,5% ,0603,SMT	R116,232,1057	271611472301	RP;4.7K*4,8P ,1/16W,5% ,0612,SMT	RP11
271071242301	RES;2.4K ,1/16W,5% ,0603,SMT	R295,279	271621102303	RP;1K*8 ,10P,1/16W,5% ,1206,SMT	RP9,70
271071249311	RES;249K ,1/16W,1% ,0603,SMT	R114	271621103303	RP;10K*8 ,10P,1/16W,5% ,1206,SMT	RP1,24-26,29,32,4
271071270301	RES;27 ,1/16W,5% ,0603,SMT	R272,276	271621472303	RP;4.7K*8,10P,1/16W,5%,1206,SMT	RP17,23,61,63,64,
271071273301	RES;27K ,1/16W,5% ,0603,SMT	R348	271911103901	VR;10K ,.05W,20%,XV0102GPH1N-93	VR1
71071301311	RES;301K ,1/16W,1% ,0603,SMT	R208,158	272002105701	CAP;1U ,CR,16V ,-20+80%,0805,SM	C169,281,282,344
71071303301	RES;30K ,1/16W,5% ,0603,SMT	R258,253	272003224701	CAP;.22U ,CR,25V ,+80-20%,0805,Y	C286,289,413,804
	RES;33 ,1/16W,5% ,0603,SMT	R61,84,89,121,		CAP;.047U,CR,50V,10%,0805,X7R	C263,290
	RES;3.3K ,1/16W,5% ,0603,SMT	R237	272012225702	CAP;2.2U ,CR,16V ,+80-20%,1206,Y	C191,268,309,311
	RES;33K ,1/16W,5% ,0603,SMT	R226,227,306,1004,	272012335701	CAP;3.3U ,CR,16V ,-20+80%,1206,S	C331

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
72012475701	CAP;4.7U ,CR,16V ,+80-20%,1206,Y	C418,475,516	274011431404	XTAL;14.318MHZ,30PPM,32PF,SMT	X1,9
72015474501	CAP;.47U ,CR,50V,20%,1206,Z5U	C527,538	274011431405	XTAL;14.318MHZ,20PPM,18PF,SMT	X11
272022106701	CAP;10U ,16V,+80-20%,1210,Y5V,S	C23,28,29,33,43	274011600405	XTAL;16MHZ,30PPM,16PF,SMT	X5
272072104702	CAP;.1U ,16V,+80-20%,0603,SMT	C15,16,18,20,26,27	274011693401	XTAL;16.9344MHZ,50PPM,20PF,SMT	X6
272072221301	CAP;220P ,16V,5% ,-30+85'C,0603,	C380,393,513,EC48	274012863401	XTAL;28.63636M,30PPM,30PF,SMT,FU	X7
272073180401	CAP;18P ,CR,25V ,10%,0603,NPO,S	C6,270,271,442,451	274013276103	XTAL;32.768KHZ,30PPM,12.5PF,CM20	X10
272075100401	CAP;10P ,50V ,10%,0603,COG,SMT	C70,71,406,420	274013546401	XTAL;35.46895MHZ,30PPM,30PF,SMT,	X8
272075101701	CAP;100P ,50V ,+80-20%,0603,SMT	C3,4,7,21,22,464	282104052001	IC;CD4052BM,MULTIPLEXER,SO,16P	U42,43
272075102501	CAP;1000P,CR,50V,20%,0603,SMT	C333,432,438,510	286329152001	IC;MIC29152,VOL REG,TO-263-5	U1000
272075103702	CAP;.01U ,50V,+80-20%,0603,SMT	C17,61,63,79,80,84,	282153238401	IC;PI5C32X384C,BUS SWITCH,QVSOP,	U11,12,17
272075121401	CAP;120P ,CR,50V ,10%,0603,NPO,S	EC4,7	282574000005	IC;74AHC00,QUAD 2I/P NAND,TSSOP,	U62
272075181301	CAP;180P ,50V ,5% ,0603,SMT	EC31-33,39-41,43,46	282574014004	IC;74AHC14,HEX INVERTER,TSSOP,14	U52,64
272075220301	CAP;22P ,50V ,5% ,0603,COG,SMT	C396,404	282574032005	IC;74AHC32,QUAD 2-I/P OR,TSSOP,1	U72
272075222401	CAP;2200P,50V,10%,0603,SMT	C500	282574074004	IC;74AHC74,DUAL D F/F,TSSOP,14P	U54
272075331501	CAP;330P ,50V ,20%,0603,COG,SMT	C445	282574123003	IC;74VHC123,RETRI. M/RESET,SSOP,	U47
272075470401	CAP;47P ,50V ,10%,0603,COG,SMT	C323,324,329,362,	282574244005	IC;74AHC244,OCT,BUF/DRIVE,TSSOP,	U55,58,68,73,707,
272075471401	CAP;470P ,50V,10%,0603,SMT	C97,265,291,	282574373004	IC;74AHC373,OCT D-TRAN,TSSOP,20P	U24
272075472701	CAP;4700P,50V,+80-20%,0603,SMT	C824	282574374003	IC;74AHC374,OCT 3ST D F/F,TSSOP,	U25,26
272075561701	CAP;560P ,CR,50V ,+80-20%,0603,S	C95,103,266,292	283666510003	IC;SRAM,64K*32,LQFP100,3.3V,5031	U13,6
272075681401	CAP;680P ,50V ,10%,0603,NPO,SMT	C473,459	283666510004	IC;SRAM,64K*32,TQFP100,2.5-3.5,5	U6,U13
272601336501	EC;33U ,10V,D5L5.4,20%,-40+85,S	C1004	283666510002	IC;SRAM,32K*8-12,SOJ,28P,5031	U30
272602107501	EC;100U,16V,M,6.3*5.5,-55+85'C,S	C492,1005,1008	283766510001	IC;DRAM,256K*16,EDO,60NS,SOJ40,5	U20-23,33-36
272602226502	EC;22U ,16V,D5L5.4,20%,-40+85,S	C1001,1003	284100430001	IC;FW82439TX,MTXC,CPU/PCI,BGA,32	U31
272602227502	EC;220U ,16V,M,6.3*7.7,-15+105',	C456,478,457,	284100430002	IC;FW82371AB,PIIX4,PCI/ISA,BGA,3	U53
273000010003	FERRITE CHIP;36OHM/100MHZ,4332	L23,41,42,44,49,	284500045001	IC;LM45B,TEMPERATURE SENSORS,SO	U1001
73000053228	INDUCTOR;2.2UH,5%,3225,SMT	L26,33	284500724001	IC;AD724,RGB TO NTSC/PAL,SO,16P	U18
73000130001	FERRITE CHIP;120OHM/100MHZ,1608,	L24,25,27	284500827001	IC;BT827,VIDEO DECODER,PQFP,100P	U50
73000130006	FERRITE CHIP;600OHM/100MHZ,.2A,1	EL1001,1002,1004	284504237001	IC;CS4237B,AUDIO 3D SOUND,TQFP,1	U49
73000130012	FERRITE CHIP;70OHM/100MHZ,1608,S	EL23-48,50-63,65	284504331001	IC;CS4331,STEREO D/A CONVERTER,S	U70
	FERRITE CHIP;30OHM/100MHZ,1608	R301,EL1000,L66	284504867001	IC;W48S67-02,SYSTEM CLOCK,SSOP,4	U45
73000150002	FERRIET CHIP;120OHM/100MHZ,2012,	EL4,5,21,	284505330001	IC;PI5V330,WIDEBAND/VIDEO,QSOP,1	U2
73000500005	CHOKE COIL;7UH,T6*3*3,D.3,SMT	T1	284506701001	IC;CL-PD6701,PC CARD COMPANION,S	U713

					1
PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
284506832004	IC;OZ6832TC2,PCI/CARDBUS,TQFP,20	U38	291000012001	CON;HDR,MA,10P*2,1.25MM,ST,SMT	J15
284509385002	IC;CYBER9385-1X,VGA,CTRL,BGA,256	U10	291000015004	CON;HDR,FM,25P*2,1.27,ST,PITCHIN	J1000
284580051001	IC;80C51SL-BG,KBD CTLR,PQFP,100P	U32	291000020402	CON;HDR,SHROUD,MA,4P*1,2.0,R/A,U	J6
284587338002	IC;PC87338VJG,SUPER I/O,TQFP,100	U9	291000025202	CON;HDR,MA,26P*2,.635MM,H11,R/A,	J1003,1015,1016
284590363001	IC;DS90C363,LVDS,18BIT,SSOP,48P	U4,5	291000150804	CON;FPC/FFC,8P,1MM,R/A,2CONTAC,E	J19
286100102001	IC;TPA0102,AUDIO AMP,1.5W,TSSOP,	U37	291000152401	CON;FPC/FFC,24P,1MM,R/A,ELCO	J18
286100358012	IC;LM358,DUAL OP/AMP,SO 8P	U27	291000410201	CON;WFR,MA,2P,1.25,ST,SMT/MB	J8,9,12,1006,
286100372014	IC;TLC372CD,DUAL COMP,SO	U60	291000410301	CON;WFR,MA,3P,1.25,ST,SMT/MB	J10
286133078001	IC;MC33078D,LOW NOISE OP AMP.,SO	U7,44,59	291000410401	CON;WFR,MA,4P,1.25MM,ST,SMT	J23
286200213001	IC;MAX213,RS-232,SSOP,28P	U1	291000516005	CON;RBN,MA,30P*2,ST,H9.6,SMT,800	J1012
286300809002	IC;MAX809,RESET CIRCUIT,2.9V,SOT	U56	291000610032	IC SOCKET;32P,PLCC,TIN,W/O PEGS,	U14
286302206001	IC;TPS2206,CARDBUS PWR CTLR,SSOP	U40	291000621443	DIMM SOCKET;144P,.8MM,H=4MM,SM7	J20,J21
286302951015	IC;LP2951ACM,VOLTAGE REGULATOR,S	U8	295000010014	FUSE;1.1A/6V,POLY SWITCH,PTC,SMD	F2-4
286305200001	IC;MIC5200-5BS,VOL REG,SOT-223	U67	295000010102	FUSE;FAST,3A,32V,1206,SMT,CERAMI	F1000,1001
286501410001	IC;MK1410,NTSC/PAL CLOCK,SO,8P,S	U74	297040101003	SW;PUSH BUTTON,SPST,.1A,30V,2P,S	SW1,2
288001100001	FIR;HSDL-1100,TRANSCEIVER,X07,SM	U63	297120101005	SW;DIP,SPST,8P,50VDC,.1A,SMT,DHS	SW1002
288100056001	DIODE;RLZ5.6B,ZENER,5.6V,5%,LL34	D20	288209958001	TRANS;NDS9958,DUAL N&P MOSFET,SC	Q3
288100202001	DIODE;DAN202K,80V,SWITCH,SMT	D13	297120101006	SW;DIP,SPST,16P,50VDC,.1A,SMT,DH	SW1001
288100202002	DIODE;DAP202K,80V,SWITCH,DUAL,SO	D12,14	316665200001	PCB;PWA-PITCHING3/M BD	R01
288100212001	DIODE;DAN212K,80V,SWITCH,SOT23	D2,4,6,7,9-11,15,16	481665100001	F/W ASSY;SYS/VGA BIOS,5031	U15
288100701002	DIODE;BAV70LT1,70V,225MW,SOT-23	D8,18	242600000158	LABEL;10*10,BLANK,COMMON,HI-TEM	P
288200144001	TRANS;DTC144WK,NPN,SMT	Q1,6,9,13-18,4,7	283420402003	IC;FLASH,256K*8-120,5V,PLCC32,BT	U15
288200352001	TRANS;NDS352P,DMOS,TO-236AB	Q22,53,71	273000110015	FERRITE CHIP;80OHM/100MHZ,3216,3	EL49,18,L30
288203904010	TRANS;MMBT3904L,NPN,Tr35NS,TO236	Q74,80,81	272015104701	CAP;.1U(A5),CR,50V,+80-20%,1206,	C901
288203906018	TRANS;MMBT3906L,PNP,Tr35NS,TO236	Q51	271002333301	RES;33K ,1/10W,5% ,0805,SMT	R397
288209410001	TRANS;SI9410DY,N-MOSFET,.04OHM,S	Q8	342665200013	CONTACTOR;AUDIO,PITCHING3	
288209430001	TR;NDS9430,P-FET,.06OHM,SO,8P	Q19,20,72	346665100002	INSULATOR;PCMCIA,5031	
288227002001	TRANS;2N7002LT1,N-CHANNEL FET	Q2,5,21	481665100002	F/W ASSY;KBD CTRL,EN,5031/6031	
291000010604	CON;HDR,FM,6P*1,1.25MM,ST,SMT	J11,13	283305402001	IC;EPROM,32K*8,120NS,CMOS,PLCC,3	U14
291000010605	CON;HDR,FM,3P*2,2.0MM,ST,SMT	J1008	242600000145	LABEL;10*10,BLANK,COMMON	
291000011601	CON;HDR,MA,80P*2,.635MM,ST,SMT	J22	411665200027	PWA;PWA-PITCHING3 OVERSEA D/D BI)
291000011602	CON;HDR,FM,8P*2,2.0MM,ST,SMT	J14	312271006152	EC;100U ,10V,M,RA,D6.3*9.8,OS-CO	C2,C5,C7,C19 87

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
312271006350	EC;100U ,25V,20%,RA,6.3*7,-40~10	C3,6,8	271071432211	RES;43.2K,1/16W,1%,0603,SMT	R22,R28
312273306151	EC;330U ,6.3V,20%,RA,D10,W/OS-CO	C4,C1	271071473301	RES;47K ,1/16W,5% ,0603,SMT	R10,R3
313000020078	CHOKE COIL;15UH,D.7*16T/.2*32,55	T1	271071474301	RES;470K ,1/16W,5% ,0603,SMT	R9,R11,R13,R14,R16
313000020110	CHOKE COIL;8uH,12.5TS,D0.8,55130	L2	271071499211	RES;49.9K,1/16W,1%,0603,SMT	R508
313000020114	CHOKE COIL;15uH,16.5TS,D0.8,5513	L1	271071562311	RES;562K ,1/16W,1% ,0603,SMT	R539,541
328101002001	DIODE;HRW1002A,10A,20V,TO-220AB	D7	271071681111	RES;6.81K,1/16W,1%,0603,SMT	R18,R29
342665200002	SHIELDING;D/D BD,PITCHING3		271071787311	RES;787K ,1/16W,1% ,0603,SMT	R507
346665200027	INSULATOR;D/D,SHIELDING,PITCHING		271071976211	RES;97.6K,1/16W,1%,0603,SMT	R538,542
346665200036	INSULATOR;D/D CHOKE,PITCHING3		272002105701	CAP;1U ,CR,16V ,-20+80%,0805,SM	C516,C9
411665200028	PWA; PWA-PITCHING3 OVERSEA SMT D/	<i>'</i>	272013105501	CAP;1U ,CR,25V ,+80-20%,1206,S	C505
271002100301	RES;10 ,1/10W,5% ,0805,SMT	R514	272022106701	CAP;10U ,16V,+80-20%,1210,Y5V,S	C12,C508
271045107101	RES;.01 ,1W ,1% ,2512,SMT	R515,R513	272073104501	CAP;.1U ,25V,20%,0603,SMT	C14,C18,C20,C502
271045257101	RES;.025 ,1W ,1% ,2512,SMT	R524	272075101701	CAP;100P ,50V ,+80-20%,0603,SMT	C13,17
271071000002	RES;0 ,1/16W,0603,SMT	R534,6,543	272075102501	CAP;1000P,CR,50V,20%,0603,SMT	C517
271071100302	RES;10 ,1/16W,5% ,0603,SMT	R519,R15	272075103501	CAP;.01U ,50V ,20%,0603,SMT	C21,501
271071103302	RES;10K ,1/16W,5% ,0603,SMT	R20,R23,R25,R41,R523	272075104701	CAP;.1U ,50V,+80-20%,0603,SMT	C11,C15,C16,C503
271071104101	RES;100K ,1/16W,1% ,0603,SMT	R17,R39,R40,R510	272075470701	CAP;47P ,50V ,+80-20%,0603,SMT	C10
271071104302	RES;100K ,1/16W,5% ,0603,SMT	R7,24	273000250005	FERRITE CHIP;160OHM/100MHZ,6A,45	L501,L502
271071105101	RES;1M ,1/16W,1% ,0603,SMT	R30,R525	286100339002	IC;LP339,ULTRA-LOW PWR COMP.,SO,	U503,U2
271071105301	RES;1M ,1/16W,5% ,0603,SMT	R8,R34,R531	286300431004	IC;AIC431,.5%,ADJ SHUNT REG,SOT-	Q521
271071121211	RES;12.1K,1/16W,1%,0603,SMT	R532,540	286300786001	IC;MAX786CAI,PWM CTLR,DUAL,SSOP,	U502
271071124311	RES;124K ,1/16W,1% ,0603,SMT	R38,R512	286300798001	IC;MAX798ESE,PWM CTLR,SO,16P	U501
	RES;133K ,1/16W,1% ,0603,SMT	R33,R26	286317812001	IC;HA178L12UA,VOLT REGULATOR,SC-	U1
271071169311	RES;169K ,1/16W,1% ,0603,SMT	R27,R21	288100024002	DIODE;RLZ24D,ZENER,23.63V,5%,SMT	D507
271071204101	RES;200K ,1/16W,1% ,0603,SMT	R1,R32,R506	288100032013	DIODE;BAS32L,VRRM75V,MELF,SOD-80	D4,D503,D504,D506
271071221301	RES;220 ,1/16W,5% ,0603,SMT	R5,R516	288100056001	DIODE;RLZ5.6B,ZENER,5.6V,5%,LL34	D501
271071224301	RES;220K ,1/16W,5% ,0603,SMT	R4,R12,R501,R502	288100202001	DIODE;DAN202K,80V,SWITCH,SMT	D5,D6,D505
271071226311	RES;226K ,1/16W,1% ,0603,SMT	R530	288101004024	DIODE;EC10QS04,RECT,40V,1A,CHIP,	D1,D2,D3,D502
271071237311	RES;237K ,1/16W,1% ,0603,SMT	R37	288200144001	TRANS;DTC144WK,NPN,SMT	Q522
271071301311	RES;301K ,1/16W,1% ,0603,SMT	R31	288202222001	TRANS;MMBT2222AL,NPN,TO236AB	Q5,Q9,Q515,Q517
271071332311	RES;332K ,1/16W,1% ,0603,SMT	R505	288204410001	TRANS;SI4410DY,N-MOSFET,.02OHM,S	Q8,Q510,Q511,Q512
271071392311	RES;392K ,1/16W,1% ,0603,SMT	R509	288204435001	TRANS;SI4435DY,P-MOSFET,.035OHM,	Q1,2,506,507 88

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
288227002001	TRANS;2N7002LT1,N-CHANNEL FET	Q3,Q4,Q6,Q7,Q10,Q501	345665200017	CONDTIVE SPONG;AUDIO,PITCHING3	
291000015005	CON;HDR,SHROUD,MA,25P*2,1.27MM,S	J1	345665100017	PAD;T/P BUTTON CUSHION PAD,5031	
295000010009	FUSE;NORMAL,5A/32VDC,3216,SMT	F501,F502,F503	451665100003	ME KIT;HDD,5031	
316665200002	PCB;PWA-PITCHING3/DD BD	R01B	340665100016	HDD HOLDER ASSY;5031	
411665200006	PWA;PWA-PITCHING3 VIDEO JACK BD		342665100003	HOLDER;HDD HOLDER,5031	
411665200007	PWA;PWA-PITCHING3 SMT VIDEO JACK		344665100006	COVER;HDD COVER,5031	
316665200004	PCB;PWA-PITCHING3/VIDEO JACK BD	R00C	344665100007	COVER;PCMCIA COVER,5031	
272075101701	CAP;100P ,50V ,+80-20%,0603,SMT	C501,502	346664700002	INSULATOR;REM,HDD,5026	
273000130006	FERRITE CHIP;600OHM/100MHZ,.2A,1	L501	342665100005	BRKT;HDD,5031	
273000130001	FERRITE CHIP;120OHM/100MHZ,1608,	L502	346664700007	INSULATOR;HDD TOP,5026	
273000130013	FERRITE CHIP;30OHM/100MHZ,1608	L503,504	370103010603	SPC-SCREW;M3L4,K-HEAD(+),NIW	HDD TO HOLDERx4
	, , , , , ,	J1	370102010402	SPC-SCREW;M2L4,NIW,K-HD(+),731	
331850002006	CON;RCA PIN JACK,2PYEL,JPJ254501	J502	412665200004	PCB ASSY;HDD CONN. BD,PITCHING3	
331850002007	CON;RCA PIN JACK,2PBLK,RJ1091011	J501	523466470002	FDD ASSY;1.44M,3.5",D-5026	
411665200009	PWA;PWA-PITCHING3 BOTTOM LED BD		242664710020	LABEL;FDD,PC T=0.2,1,5026	
316665200006	PCB;PWA-PITCHING3/LED BD	R0A	340664710008	HOUSING COMP;FDD,1,5026	
	CON;HDR,MA,8P*2,2.0MM,ST,GLD,SUY	J501	344664710036	COVER;FDD,1,5026	
272075101701	CAP;100P ,50V ,+80-20%,0603,SMT	C501-509	421664700053	FPC ASSY;REM. FDD CON.,FPC,5026	
294011200001	LED;GRN,H1.5,0805,PG1102W,SMT	D1-3,6-8	242664710019	LABEL;CAUTION,FDD,1,5026	
288100202002	DIODE;DAP202K,80V,SWITCH,DUAL,SO	D501,503	342664800006	HEATSINK;FDD,PITCHING	
288100212001	DIODE;DAN212K,80V,SWITCH,SOT23	D502	523410290015	FD DRIVE;1.44M,3 MODE,FD-05HG-56	
288203904010	TRANS;MMBT3904L,NPN,Tr35NS,TO236	Q501-505,508	421664710003	CABLE ASSY;EXT FDD,1,5026	
288200144001	TRANS;DTC144WK,NPN,SMT	Q506,507	344664710065	COVER;FDD CON.,1,5026	
288203906018	TRANS;MMBT3906L,PNP,Tr35NS,TO236	Q509,510	421664700002	CABLE ASSY;FDD,5026	
		PR501,503	342664700021	GROUND;FDD CON.,5026	
271611103301	RP;10K*4 ,8P ,1/16W,5% ,0612,SMT	RP502	411664700032	PWA;PWA-5026 FDD TRANS BD	
271071681301	RES;680 ,1/16W,5% ,0603,SMT	R501,502,504,508,	316664700029	PCB;PWA-5026/FDD TRAN BD	R01
271071223302	RES;22K ,1/16W,5% ,0603,SMT	R503	331120020001	CON;HDR,SHROUD,MA,10P*2,2MM,ST	J2
271071104302	RES;100K ,1/16W,5% ,0603,SMT	R505-507	331030052002	CON;HDR,MA,26P*2,1.27,ST,GOLD	J1
282574032005	IC;74AHC32,QUAD 2-I/P OR,TSSOP,1	U501	373203010601	T-SCREW;P,M3,L6,PAN(+),0,ZNC	
346665200024	INSULATOR; DIMM, PITCHING3		222600020009	PE BUBBLE BAG;10"*8",COMMON	
346665200032	INSULATOR; CPU SCREW HOLE, PITCHIN		441664700063	BATT ASSY;12V/4AH,NIMH,SANYO,502	89

I					
PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
	LABEL;BATT ASSY,12V/4.0AH,SNY,50		242664710019	LABEL;CAUTION,FDD,1,5026	
310131103002	CFM-BAT;NTCR,10K,ISUZU,103AT-2		342664800006	HEATSINK;FDD,PITCHING	
316664700011	PCB;PWA-5026/BATT CONN BD	R00	523410290015	FD DRIVE;1.44M,3 MODE,FD-05HG-56	
331030010006	CON;HDR,FM,10P*1,2.0MM,ST,GLD		541566470014	FRU;CD ROM MODULE,20X,5026	
335152000020	CFM-BAT;THERMAL BREAKER,ISUZU,IP		523466470013	CD ROM DRIVE ASSY;20X,SR200S,502	
335152000021	CFM-BAT;FUSE,THERMAL,ELMWOOD,D	09	222663920001	PE BAG;150*50,FRU,LP486	
335512000001	POLYSWITCH;3.5A,SRP350		222664820007	PE BAG;90*130,PITCHING	
338712010011	BATTERY;NIMH,1.2V/4AH,D18,SANYO		340664710002	BEZEL ASSY;CD ROM(MITSU),5026	
340664710044	HOUSING ASSY;BATT 4000mA,1,5026		342665100009	BRKT;CD ROM (MIT),5031	
344664710058	PANEL;BATTERY,1,5026		340664710018	FRAME COMP;CD-ROM(MAT),1,5026	
344664710100	COVER;BATT,10*18D,1,5026		370102010302	SPC-SCREW;M2L3,NIW,K-HD,736	
272003104701	CAP;.1U ,CR,25V ,+80-20%,0805,Y	C1,2,3,4	370102010701	SPC-SCREW;M2L7,K-HD,NIB	
288100062001	DIODE;RLZ6.2B,ZENER,SMT,LL34	D1	377102010001	STANDOFF;M2 DP5 H4*13*L1.5	
294011200004	LED;YE/GR,H1.1,L2,W1.25,CL170YG,	D2,3,4,5,6	421665200041	FPC ASSY;CD-ROM,PITCHING3	
288100032013	DIODE;BAS32L,VRRM75V,MELF,SOD-80	D501,502	523411442506	CD ROM DRIVE;8-20X,SR200S	
288202222001	TRANS;MMBT2222AL,NPN,TO236AB	Q1	227664700004	END CAP-1;CD ROM,5026	
	RES;100K ,1/10W,1% ,0805,SMT	R2	227664700005	END CAP-2;CD ROM,5026	
	RES;100K ,1/10W,5% ,0805,SMT	R1,3,501	227664800008	END CAP-1;CD ROM,PITCHING	
271002909311	RES;909K ,1/10W,1% ,0805,SMT	R4	221664740002	BOX;CD ROM,5026	
271002204301	RES;200K ,1/10W,5% ,0805,SMT	R7,8,11,511	222664820003	PE BAG;CD ROM,PITCHING	
271045507101	RES;.05 ,1W ,1% ,2512,SMT	R9,10	24260000088	LABEL;BAR CODE,125*65,COMMON	
271002471301	RES;470 ,1/10W,5% ,0805,SMT	R504,505,506,507,508	565166470001	S/W;1.44M,UTILITY DRIVE,5026	
	RES;100 ,1/10W,5% ,0805,SMT	R509	222600050108	ENVELOPE;3.5"FD,PVC,COMMON	
297040105002	SW;PUSH BUTTON,SPST,12V/50MA,4P,	SW1	242661900008	LABEL;3.5",EN,ALL COMMON	
	IC;BQ2014,GAS GAUGE,SO,16P	U1	551103200013	FLOPPY DISKETTE;3.5",1.44MB,2HD	
316664700052	PCB;PWA-5026/BATT VIEW 4AH BD	R00B	561566470019	MANUAL;EN/GR,14X/20X CD ROM,5026	
461665100001	PACKING KIT;5031		531004870031	KBD;87,US,NK1K002-US,6031	
523466470002	FDD ASSY;1.44M,3.5",D-5026		451665100031	LABEL KIT;5031	
242664710020	LABEL;FDD,PC T=0.2,1,5026		541666510001	ACCESSORY KIT;AK-5031-EN	
340664710008	HOUSING COMP;FDD,1,5026		332810000033	PWR CORD;125V/7A,2P,BLACK,AMERIC	
344664710036	COVER;FDD,1,5026		422664700001	CABLE ASSY;A/D - CHASSIS,120CM,5	
421664700053	FPC ASSY;REM. FDD CON.,FPC,5026		561566530001	MANUAL;USER'S,EN,6031/5031	90

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
561566530002	MANUAL;QUICK REF,EN,6031/5031		345665200006	CUSHION;DOWN,LCD,PITCHING3	
222600020009	PE BUBBLE BAG;10"*8",COMMON		346665100003	INSULATOR; INVERTER, 5031	
421664710003	CABLE ASSY;EXT FDD,1,5026		370102010301	SPC-SCREW;M2L3,NNIB,K-HD,727	
344664710065	COVER;FDD CON.,1,5026		370102010601	SPC-SCREW;M2L6,K-HEAD(+),NIW	
421664700002	CABLE ASSY;FDD,5026		370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727	
342664700021	GROUND;FDD CON.,5026		411665300006	PWA;PWA-6031 CCD TRANS BOTTOM B	
411664700032	PWA;PWA-5026 FDD TRANS BD		272072104702	CAP;.1U ,16V,+80-20%,0603,SMT	C1
316664700029	PCB;PWA-5026/FDD TRAN BD	R01	291000012004	CON;HDR,FM,10P*2,1.27MM,ST,SMT	J1
331120020001	CON;HDR,SHROUD,MA,10P*2,2MM,ST	J2		CON;HDR,MA,8P*1,1.25,R/A,SMT,HIR	J2
331030052002	CON;HDR,MA,26P*2,1.27,ST,GOLD	J1	316665300003	PCB;PWA-6031/CCD-TRAN BOTTON BD	
373203010601	T-SCREW;P,M3,L6,PAN(+),0,ZNC		273000130010	FERRITE CHIP;130OHM/100MHZ,1608,	R1,R2
565166510005	S/W;1.44M,CD ROM DRIVER,5031			FERRITE CHIP;30OHM/100MHZ,1608	R3
222600050108	ENVELOPE;3.5"FD,PVC,COMMON		412665200001	PCB ASSY;INVERTER BD,PITCHING3	
242661900008	LABEL;3.5",EN,ALL COMMON			LCD;LT133X1-104,TFT,13.3,XGA	
551103200013	FLOPPY DISKETTE;3.5",1.44MB,2HD		421665100001	WIRE ASSY;LCD(CCD)-M/B,5031	
565166510011	S/W;CD ROM,SYSTEM DRIVER,5031			WIRE ASSY;D/A,5031	
324180586033	IC;CPU,P55C,200MHZ,2.8V,PPGA,296		421665200002	WIRE ASSY;LCD TO M/B,PITCHING3	
323766490021	SDRAM MODULE;16M,ATP,5027		340665100001	TILT UNIT;13.3S(L),5031	
	LCD ASSY;13.3(S),TFT,5031			TILT UNIT;13.3(R),5031	
340665100005	HOUSING ASSY;13.3(S) LCD,5031			BRKT;13.3S(L) LCD BRACKET,5031	
344665100003	LENS;POWER LENS(B),5031		341665100002	BRKT;13.3(R) LCD BRACKET,5031	
	HOUSING;13.3 LCD HOUSING,5031				
345665100001	PAD;LCD HOUSING(S),5031				
345665100003	PAD;LCD HOUSING SIDE PAD(S),5031				
344665100029	COVER;CCD CON COVER,5031				
345665100005	PAD;LCD HOUSING TOP PAD(S),5031				
345665100006	PAD;LCD HOUSING TOP PAD(H),5031				
340665100006	COVER ASSY;13.3(S) LCD,5031				
344665100004	LENS;POWER LENS(T),5031				
344665100012	COVER;13.3S LCD COVER,5031]		
344665100030	PLUG;LCD HOOK,5031]		
345665100009	CUSHION;TOP,LCD COVER,5031				91